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Abstract

We consider a challenge problem involving the automatic detection of large commercial
vehicles such as trucks, buses, and tractor-trailers in Quickbird EO pan imagery. Three
target classifiers are evaluated: a “bagged” perceptron algorithm (BPA)that uses an
ensemble method known as bootstrap aggregation to increase classification performance, a
convolutional neural network (CNN) implemented using the MobileNet architecture in
TensorFlow, and a memory-based classifier (MBC), which also uses bagging to increase
performance. As expected, the CNN significantly outperformed the BPA. Surprisingly, the
performance of the MBC was only slightly below that of the CNN. We discuss these results
and their implications for this and other similar applications.

Introduction

Challenge problems with crowd-sourced solutions are becoming increasingly popular in the
machine learning community. We describe a specific problem of interest for automatic
target recognition - the detection of vehicles in complex cluttered environments,
specifically large commercial vehicles such as trucks, buses, and tractor-trailers in overhead
imagery such as Quickbird EO pan imagery. Our problem is simpler in scope than NGA’s
recent xView detection challenge® but arguably more challenging in terms of the complexity
of the background clutter.

Two of the three classifiers evaluated in this study currently operate within GD’s Image
Data Conditioner (IDC), which is a hybrid ATR architecture that combines model-based
detection, segmentation, and classification algorithms with machine learning. ATR
algorithms use 3-D geometrical models that represent objects of interest in terms of their
size and shape to find possible instances of those objects in the image. IDC then uses neural
networks to filter detections based on their appearance. Convolutional neural networks
(CNN) contain layers that learn shift, rotation, and scale invariance. The model-based
component of IDC generates “normalized” chips that are centered on possible objects of
interest, rotated so that object is oriented horizontally, and scaled to be a fixed size in
pixels® as shown in Figure 1. Normalization significantly reduces the complexity of neural
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network training and allows IDC to support non-CNN architectures but can be affected by
segmentation errors as seen in the figure.
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Figure 1 Example of training data used for ship classification. Normalized chips are automatically
generated by IDC.

Bagged Perceptron Algorithm

The perceptron was the first neural network algorithm integrated into IDC for ship
classification* (Figure 1). If the classes of interest are linearly separable, the perceptron will
converge to a solution vector w such that

1 ifw-x+b>0

o = {0 otherwise @)

where x is a feature vector computed from the chip. Being a simple, and relatively weak

classifier, we implemented a method known as bootstrap aggregation or “bagging” to

improve performance. Our “bagged” perceptron algorithm (BPA) computes K perceptrons

by sampling the training set K times with replacement. Perceptron outputs are then
aggregated:

FGO = ) fi®) )
k

The aggregated output is divided by K to produce a score between zero and one that
represents the target probability.

BPA used a set of biologically-inspired features modeled after those computed in the feed-
forward path of the ventral stream in the primate visual cortex®. The ventral stream (also
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known as the "what pathway") is involved with object and visual identification and
recognition. This is in contrast to the dorsal stream (or, "where pathway") that is involved
with processing the object's spatial location relative to the viewer®. The first two layers in
the ventral stream consist of simple and complex neurons that act as a bank of spatially
tuned Gabor filters (S1 layer) combined using max pooling (C1 layer). In our
implementation, for a 128x128 pixel chip (receptive field), there are 2,088 features.

In order to understand the structure of the underlying data in various applications we use a
nonlinear mapping algorithm’ to visualize high dimensional feature spaces as 2D maps.
Figure 2 (left) is a 2D color-coded visualization of the 2,088-dimenional S1-C1 feature
vectors that were used to train an early version of the BPA ship classifier. The separation of
the training data was good, which lead to a probability of correct classification Pcc = 0.94.
As the size of the training set increased, the separation decreased (right), which resulted in
alower Pcc = 0.76.

Clutter Clutter

Figure 2 2D visualization of chip data used to train BPA ship classifier. Dotted lines depict decision
boundaries computed by the algorithm for 29 and 111 target and clutter exemplars (left and right,
respectively).

Memory-Based Classifier

The linear classifier appeared to be adequate for ship classification when the number of
features exceeded the number of exemplars®. As the training set grew, the performance of
the BPA began to decrease. This became even more evident as we began to address the
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challenge problem (Figure 3). The difficulty of separating vehicles from manmade clutter is
evident in the distribution of target and clutter feature vectors from just a portion of the
training set as shown in Figure 4.

Figure 3 Preliminary training set for vehicle classification challenge problem. 20 of 237 target chips (top)
and 20 of 300 clutter chips (bottom).

POOR GENERALIZATION CLASSIFICATION

Figure 4 Distribution of feature vectors of 237 target Figure 5 Memory-based classification assigns
chips and 300 clutter chips. the class of the nearest exemplar.

The complexity of the underlying feature space motivated a new approach to classification
based on the concept of memory-based reasoning®. The memory-based classifier (MBC) is,
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in essence, a non-parametric minimum distance classifier that compares the features x of an
unknown chip to those of all exemplar chips and assigns the class y of the nearest chip

f®&) = ym|m = argmin|lx —x,||Vn €T (3)
where y,, = {0,1} and T is the training set consisting of M target and clutter exemplars
{Xm, ¥m}. Unlike the perceptron algorithm, the generalization performance of the MBC
depends on the underlying data distribution (Figure 5). Good generalization occurs in
places where there are clusters of points with the same class. MBC generalizes poorly in

places where target and clutter classes are interspersed.

A leave-one-out test provides an estimate of MBC performance by comparing classes of
neighboring exemplars. Define T;,, to be the training set excluding the m-th exemplar. Let

m* = argmin||x,, — X,||Vn €Ty, (4)

be the index of the vector that is nearest to the m-th exemplar. If

1 =y .
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then
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PCC=M26(m) (6)

is an estimate of the classification performance. The idea of leaving one out leads to a
bootstrapped version of the MBC, which like the BPA, combines the outputs from multiple
classifiers

fu®) = ym| m = argmin||x — xp|| V n € T}, (7)

constructed from subsets of the training set T, using Eq. 2, where the T, are generated by
randomly selecting a specified fraction of the training set.

Using a single MBC and all of its training data is analogous to an “overfitted” CNN, neither of
which will perform well outside of the training data set. Bootstrapping (Eq. 7) selects a
fraction of the training set that forces the classifier to find nearest neighbors that are farther
away. Together with aggregation (Eq. 2) bagging generalizes the performance of the MBC.
Decreasing the sampling fraction reduces the density of points and effectively increases the
size of the neighborhood and the amount of generalization.



Challenge Problem

The challenge problem data setis divided into separate training and test subsets. The
training data contain 7168 chips of vehicles and background clutter from scenes over two
geographical areas: South Africa (814 target and 4583 clutter chips) and Afghanistan (199
target and 1572 clutter chips). The test data contains 1037 chips from another scene over a
third geographical area: Russia (483 target and 554 clutter chips). Clutter includes natural
landforms (e.g., trees, drainage patterns, bodies of water, etc.) and manmade objects such as
roads, buildings, and other structures. Target chips include isolated vehicles, multiple
vehicles next to one another, and vehicles embedded in complex backgrounds; e.g., parked
next to a building.

A benchmark classifier was implemented in TensorFlow!? using the MobileNet!l CNN
architecture. The MobileNet architecture was adjusted with the model shrinking
hyperparameter a to scale the number of convolutional kernels at each layer. This
adjustment to model width was done to optimize performance for this particular challenge
problem. The training dataset was augmented using the Keras!? ImageDataGenerator.
Different combinations of training, validation, and test data sets were evaluated.; e.g., using
the South Africa (SA) data to train the classifier, the Afghanistan (AF) data to validate the
classifier, and the Russia (RUS) data to independently test the classifier. Table 1 summarizes
classification accuracy at a decision threshold value of 0.5 for all data set combinations.

Table 1 CNN classification accuracy on different combinations of training, evaluation, and test datasets.
Data sets are over South Africa (SA), Afghanistan (AF), and Russia (RUS).

Case | Training Data Evaluation Data | Test Data

1 SA 0.82 AF 0.82 RUS 0.75
2 SA 0.87 RUS 0.81 AF 0.75
3 AF 0.76 SA 0.75 RUS 0.66
4 AF 0.79 RUS 0.72 SA 0.66
5 RUS 0.74 SA 0.70 AF 0.64
6 RUS 0.73 AF 0.75 SA 0.73

We discovered that the validation accuracy peaked very quickly in the training process
(Figure 6). This is typically a sign of overfitting due to an oversized architecture versus an
undersized dataset. It was theorized that stretching out this training period would slow
overfitting, and improve final performance. The width scale factor of the MobileNet
architecture was scaled to a minimum size, but this did not improve final trained
performance of the system.
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Figure 6 Typical training statistics for neural network training. Stage 1 shows rapid performance gains.
Stage 2 shows slowed performance gains. Stage 3 shows overfitting of training set, and decreased
performance on validation set.

BPA and MBC were tested using the published Gabor filter tunings (filter sizes) described by
SerreS et al

GaborLR: {5,7,9,11,13,15,17,19,21,23,25,27,29,31,33,35}
and an alternate set of tunings

GaborHR: {3,5,7,9,11,13,15,17,19,21,23,25,27,29,31,33}.
which produce 6,148 features from a 128x128 pixel chip.

We also tested the two classifiers using power spectral density (PSD) features derived from
the discrete Fourier transform of the chip with a cosine window. For a 128x128 chip, there
are 64x64 = 4,096 unique power spectral values. Since the number of clutter chips was
much greater than the number of target chips, we augmented the training set by generating
permutations of the target chips with constrained random translations, rotations, and scales
as was done with the CNN.

Figure 7 summarizes the receiver operating characteristic (ROC) performance of the
challenge problem classifiers. All three classifiers were trained/validated on the SA and AF
data sets and tested on the RUS data set. The CNN had the best performance (top curve),
which was much lower than expected (for reasons that will be discussed later). The MBC
classifier using PSD features was slightly below that of the CNN, followed by MBC using
GaborHR and GaborLR features, respectively. The best MBC performance was achieved
using a sampling fraction of 0.01 and a bagging parameter K=1000. The performance of BPA
for all feature options was significantly below that of the MBC.
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Figure 7 Challenge problem neural network classifier performance summary.

Discussion

It is conjectured that the behavior of the MBC mimics that of the CNN, at least for this
problem. Although it not necessarily a practical consideration, one wonders if it would be
possible to emulate (or at least approximate) the behavior of a CNN with a MBC containing
all of the training data and augmentations (random permutations).

The relatively poor test performance of the CNN is consistent with the pattern of its training
performance that peaked very early in the training process (Figure 6). It is likely that the
performance of the CNN and other classifiers was limited in this problem by the resolution
(level of detail) of the data and in the similarity (in many cases) between vehicles and
background clutter, especially small buildings.
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