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Abstract 
	
We	 consider	 a	 challenge	 problem	 involving	 the	 automatic	 detection	 of	 large	 commercial	
vehicles	 such	 as	 trucks,	 buses,	 and	 tractor-trailers	 in	 Quickbird	EO	pan	 imagery.	 Three	
target	classifiers	 are	 evaluated:	 a	 “bagged”	 perceptron	 algorithm	(BPA)	that	 uses	 an	
ensemble	method	known	as	bootstrap	aggregation	to	increase	classification	performance,	a	
convolutional	 neural	 network	 (CNN)	 implemented	 using	 the	 MobileNet	 architecture	 in	
TensorFlow,	and	 a	 memory-based	 classifier	 (MBC),	 which	 also	 uses	 bagging	 to	 increase	
performance.	 	As	expected,	 the	CNN	significantly	outperformed	 the	BPA.	Surprisingly,	 the	
performance	of	the	MBC	was	only	slightly	below	that	of	the	CNN.	We	discuss	these	results	
and	their	implications	for	this	and	other	similar	applications.	

Introduction 
Challenge	problems	with	crowd-sourced	solutions	are	becoming	increasingly	popular	in	the	
machine	 learning	 community.	 We	 describe	 a	 specific	 problem	 of	 interest	 for	 automatic	
target	 recognition	 –	 the	 detection	 of	 vehicles	 in	 complex	 cluttered	 environments,	
specifically	large	commercial	vehicles	such	as	trucks,	buses,	and	tractor-trailers	in	overhead	
imagery	 such	 as	 Quickbird	EO	pan	 imagery.	 Our	 problem	 is	 simpler	 in	 scope	 than	 NGA’s	
recent	xView	detection	challenge2	but	arguably	more	challenging	in	terms	of	the	complexity	
of	the	background	clutter.		
 
Two	 of	 the	 three	 classifiers	 evaluated	 in	 this	 study	 currently	 operate	within	 GD’s	 Image	
Data	 Conditioner	 (IDC),	 which	 is	 a	 hybrid	 ATR	 architecture	 that	 combines	 model-based	
detection,	 segmentation,	 and	 classification	 algorithms	 with	 machine	 learning.	 ATR	
algorithms	use	3-D	geometrical	models	that	represent	objects	of	 interest	 in	terms	of	 their	
size	and	shape	to	find	possible	instances	of	those	objects	in	the	image.	IDC	then	uses	neural	
networks	 to	 filter	 detections	 based	 on	 their	 appearance.	 Convolutional	 neural	 networks	
(CNN)	 contain	 layers	 that	 learn	 shift,	 rotation,	 and	 scale	 invariance.	 The	 model-based	
component	 of	 IDC	 generates	 “normalized”	 chips	 that	 are	 centered	 on	 possible	 objects	 of	
interest,	 rotated	 so	 that	 object	 is	 oriented	 horizontally,	 and	 scaled	 to	 be	 a	 fixed	 size	 in	
pixels3	as	 shown	 in	Figure	1.	Normalization	significantly	 reduces	 the	complexity	of	neural	

	
1	Mark.Carlotto@gd-ms.com	
2	“The	Pentagon	Wants	Your	Help	Analyzing	Satellite	Images,”	Wired,	Feb	21,	2018.	
See:	https://www.wired.com/story/the-pentagon-wants-your-help-analyzing-satellite-images/	
3	As	a	result	of	scaling,	the	pixel	resolution	(meters/pixel)	varies	from	chip	to	chip.	



network	training	and	allows	IDC	to	support	non-CNN	architectures	but	can	be	affected	by	
segmentation	errors	as	seen	in	the	figure.	
	

	

	
Figure 1 Example of training data used for ship classification. Normalized chips are automatically 
generated by IDC.  

Bagged Perceptron Algorithm 
The	 perceptron	 was	 the	 first	 neural	 network	 algorithm	 integrated	 into	 IDC	 for	 ship	
classification4	(Figure	1).	If	the	classes	of	interest	are	linearly	separable,	the	perceptron	will	
converge	to	a	solution	vector	w	such	that	
 

𝑓(x) = '1 if	𝐰 ∙ 𝐱 + b > 0
0 otherwise      (1) 

 
where	x	is	 a	 feature	 vector	 computed	 from	 the	 chip.	 Being	 a	 simple,	 and	 relatively	weak	
classifier,	 we	 implemented	 a	 method	 known	 as	 bootstrap	 aggregation	 or	 “bagging”	 to	
improve	performance.	Our	 “bagged”	perceptron	algorithm	(BPA)	computes	K	perceptrons	
by	 sampling	 the	 training	 set	 K	 times	 with	 replacement.	 Perceptron	 outputs	 are	 then	
aggregated:	
 

𝐹(x) =:𝑓!(𝐱)
!

 (2) 

 
The	 aggregated	 output	 is	 divided	 by	 K	 to	 produce	 a	 score	 between	 zero	 and	 one	 that	
represents	the	target	probability.		
	
BPA	used	a	set	of	biologically-inspired	features	modeled	after	those	computed	in	the	feed-
forward	path	of	 the	ventral	stream	in	the	primate	visual	cortex5.	The	ventral	stream	(also	

	
4	Mark	 J.	 Carlotto	 and	 Mark	 A.	 Nebrich,	 "Integrating	 Visual	 Learning	 Within	 a	 Model-based	 ATR	
System,"	Proc.	SPIE	10200,	Signal	Processing,	Sensor/Information	Fusion,	and	Target	Recognition	XXIV,	
(April	2017).	



known	 as	 the	 "what	 pathway")	 is	 involved	 with	 object	 and	 visual	 identification	 and	
recognition.	This	is	in	contrast	to	the	dorsal	stream	(or,	"where	pathway")	that	is	involved	
with	processing	the	object's	spatial	 location	relative	to	the	viewer6.	The	first	two	layers	in	
the	 ventral	 stream	 consist	 of	 simple	 and	 complex	 neurons	 that	 act	 as	 a	 bank	 of	 spatially	
tuned	 Gabor	 filters	 (S1	 layer)	 combined	 using	 max	 pooling	 (C1	 layer).	 In	 our	
implementation,	for	a	128x128	pixel	chip	(receptive	field),	there	are	2,088	features.	
	
In	order	to	understand	the	structure	of	the	underlying	data	in	various	applications	we	use	a	
nonlinear	 mapping	 algorithm7 to	 visualize	 high	 dimensional	 feature	 spaces	 as	 2D	 maps.		
Figure	 2 (left)	 is	 a	 2D	 color-coded	 visualization	 of	 the	 2,088-dimenional	 S1-C1	 feature	
vectors	that	were	used	to	train	an	early	version	of	the	BPA	ship	classifier.	The	separation	of	
the	training	data	was	good,	which	lead	to	a	probability	of	correct	classification	Pcc	=	0.94.	
As	the	size	of	the	training	set	increased,	the	separation	decreased	(right),	which	resulted	in	
a	lower	Pcc	=	0.76. 	
 

  
Figure 2 2D visualization of chip data used to train BPA ship classifier. Dotted lines depict decision 
boundaries computed by the algorithm for 29 and 111 target and clutter exemplars (left and right, 
respectively). 

Memory-Based Classifier 
The	 linear	 classifier	 appeared	 to	 be	 adequate	 for	 ship	 classification	when	 the	 number	 of	
features	exceeded	the	number	of	exemplars8.	As	the	training	set	grew,	the	performance	of	
the	 BPA	 began	 to	 decrease.	 This	 became	 even	more	 evident	 as	we	 began	 to	 address	 the	

	
5	T.	Serre,	M.	Kouh,	C.	Cadieu,	U.	Knoblich,	G.	Kreiman,	and	T.	Poggio,	“A	Theory	of	Object	Recognition:	
Computations	and	Circuits	in	the	Feedforward	Path	of	the	Ventral	Stream	in	Primate	Visual	Cortex,”	
AI	Memo	2005-036,	Massachusetts	Institute	of	Technology,	Cambridge,	MA,	December	2005.	
6	Two-streams	hypothesis,	Wikipedia,	see	https://en.wikipedia.org/wiki/Two-streams_hypothesis.	
7	Mark	 J.	 Carlotto,	 "Nonlinear	 mapping	 algorithm	 and	 applications	 for	 multidimensional	 data	
analysis,"	Journal	of	Visual	Communication	and	Image	Representation,	Vol.	4,	No.	3,	Sept.	1993.		
8 	T.M.	 Cover,	 "Geometrical	 and	 Statistical	 properties	 of	 systems	 of	 linear	 inequalities	 with	
applications	in	pattern	recognition".	IEEE	Transactions	on	Electronic	Computers,	1965.	

Clutter	
Target	

Clutter	
Target	



challenge	problem	(Figure	3).	The	difficulty	of	separating	vehicles	from	manmade	clutter	is	
evident	 in	 the	distribution	of	 target	 and	clutter	 feature	vectors	 from	 just	 a	portion	of	 the	
training	set	as	shown	in	Figure	4.	
 
 

 

 
Figure 3 Preliminary training set for vehicle classification challenge problem. 20 of 237 target chips (top) 
and 20 of 300 clutter chips (bottom). 

Figure 4 Distribution of feature vectors of 237 target 
chips and 300 clutter chips. 

Figure 5 Memory-based classification assigns 
the class of the nearest exemplar. 

The	complexity	of	the	underlying	feature	space	motivated	a	new	approach	to	classification	
based	on	the	concept	of	memory-based	reasoning9.	The	memory-based	classifier	(MBC)	is,	

	
9	Craig	W.	Stanfill,	“Memory-Based	Reasoning	Applied	to	English	Pronunciation,”	AAAI-87.	
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in	essence,	a	non-parametric	minimum	distance	classifier	that	compares	the	features	x	of	an	
unknown	chip	to	those	of	all	exemplar	chips	and	assigns	the	class	𝑦	of	the	nearest	chip	
 

𝑓(x) = 𝑦"|	𝑚 = argmin‖𝐱 − 𝐱#‖	∀	𝑛 ∈ 𝑇    (3) 
 
where	𝑦" = {0,1}	and	𝑇	is	 the	 training	 set	 consisting	 of	𝑀	target	 and	 clutter	 exemplars	
{x", 𝑦"}.		Unlike	 the	 perceptron	 algorithm,	 the	 generalization	 performance	 of	 the	 MBC	
depends	 on	 the	 underlying	 data	 distribution	 (Figure	 5).	 Good	 generalization	 occurs	 in	
places	where	 there	 are	 clusters	 of	 points	with	 the	 same	 class.	MBC	 generalizes	 poorly	 in	
places	where	target	and	clutter	classes	are	interspersed.		
	
A	 leave-one-out	 test	 provides	 an	 estimate	 of	 MBC	 performance	 by	 comparing	 classes	 of	
neighboring	exemplars.	Define	𝑇"	to	be	the	training	set	excluding	the	m-th	exemplar.	Let	
 

 𝑚∗ = argmin‖𝐱𝒎 − 𝐱#‖	∀	𝑛 ∈ 𝑇"     (4) 
 
be	the	index	of	the	vector	that	is	nearest	to	the	m-th	exemplar.	If	
	

𝛿(𝑚) = N1 𝑦" = 𝑦"∗

0 𝑦" ≠ 𝑦"∗
 (5) 

 
 
then		
 

𝑃&&Q =
1
𝑀
:𝛿(𝑚)
"

 (6) 

 
 
is	 an	 estimate	 of	 the	 classification	 performance.	 The	 idea	 of	 leaving	 one	 out	 leads	 to	 a	
bootstrapped	version	of	the	MBC,	which	like	the	BPA,	combines	the	outputs	from	multiple	
classifiers		
 

𝑓!(x) = 𝑦"|	𝑚 = argmin‖𝐱 − 𝐱#‖	∀	𝑛 ∈ 𝑇!   (7) 
 
constructed	 from	subsets	of	 the	 training	set	𝑇! 	using	Eq.	2,	where	 the	𝑇! 	are	generated	by	
randomly	selecting	a	specified	fraction	of	the	training	set.		
 
Using	a	single	MBC	and	all	of	its	training	data	is	analogous	to	an	“overfitted”	CNN,	neither	of	
which	 will	 perform	well	 outside	 of	 the	 training	 data	 set.	 Bootstrapping	 (Eq.	 7)	 selects	 a	
fraction	of	the	training	set	that	forces	the	classifier	to	find	nearest	neighbors	that	are	farther	
away.	Together	with	aggregation	(Eq.	2)	bagging	generalizes	the	performance	of	the	MBC.	
Decreasing	the	sampling	fraction	reduces	the	density	of	points	and	effectively	increases	the	
size	of	the	neighborhood	and	the	amount	of	generalization.	



Challenge Problem 
The	 challenge	 problem	 data	 set	is	 divided	 into	 separate	 training	 and	 test	 subsets.	 The	
training	data	contain	7168	chips	of	vehicles	and	background	clutter	 from	scenes	over	two	
geographical	areas:	South	Africa	(814	target	and	4583	clutter	chips)	and	Afghanistan	(199	
target	and	1572	clutter	chips).	The	test	data	contains	1037	chips	from	another	scene	over	a	
third	geographical	area:	Russia	(483	target	and	554	clutter	chips).	Clutter	includes	natural	
landforms	(e.g.,	trees,	drainage	patterns,	bodies	of	water,	etc.)	and	manmade	objects	such	as	
roads,	 buildings,	 and	 other	 structures.	 Target	 chips	 include	 isolated	 vehicles,	 multiple	
vehicles	next	to	one	another,	and	vehicles	embedded	in	complex	backgrounds;	e.g.,	parked	
next	to	a	building.		
 
A	 benchmark	 classifier	 was	 implemented	 in	 TensorFlow10	using	 the	 MobileNet11	 CNN	
architecture.	 The	 MobileNet	 architecture	 was	 adjusted	 with	 the	 model	 shrinking	
hyperparameter	 α	 to	 scale	 the	 number	 of	 convolutional	 kernels	 at	 each	 layer.	 This	
adjustment	to	model	width	was	done	to	optimize	performance	for	this	particular	challenge	
problem.	 The	 training	 dataset	 was	 augmented	 using	 the	 Keras12	 ImageDataGenerator.		
Different	combinations	of	training,	validation,	and	test	data	sets	were	evaluated.;	e.g.,	using	
the	South	Africa	(SA)	data	 to	 train	 the	classifier,	 the	Afghanistan	(AF)	data	 to	validate	 the	
classifier,	and	the	Russia	(RUS)	data	to	independently	test	the	classifier.	Table	1	summarizes	
classification	accuracy	at	a	decision	threshold	value	of	0.5	for	all	data	set	combinations.	
	
Table 1 CNN classification accuracy on different combinations of training, evaluation, and test datasets. 
Data sets are over South Africa (SA), Afghanistan (AF), and Russia (RUS).  

Case Training Data Evaluation Data Test Data 
1 SA 0.82 AF 0.82 RUS 0.75 
2 SA 0.87 RUS 0.81 AF 0.75 
3 AF 0.76 SA 0.75 RUS 0.66 
4 AF 0.79 RUS 0.72 SA 0.66 
5 RUS 0.74 SA 0.70 AF 0.64 
6 RUS 0.73 AF 0.75 SA 0.73 

	
	
We	 discovered	 that	 the	 validation	 accuracy	 peaked	 very	 quickly	 in	 the	 training	 process	
(Figure	6).	This	is	typically	a	sign	of	overfitting	due	to	an	oversized	architecture	versus	an	
undersized	 dataset.	 It	 was	 theorized	 that	 stretching	 out	 this	 training	 period	 would	 slow	
overfitting,	 and	 improve	 final	 performance.	 The	 width	 scale	 factor	 of	 the	 MobileNet	
architecture	 was	 scaled	 to	 a	 minimum	 size,	 but	 this	 did	 not	 improve	 final	 trained	
performance	of	the	system.	
	

	
10	“TensorFlow:	Large-Scale	Machine	Learning	on	Heterogeneous	Systems,”	2015.		
11	 A.	 G.	 Howard,	 M.	 Zhu,	 B.	 Chen,	 D.	 Kalenichenko,	W.	Wang,	 T.	Weyand,	 M.	 Andreetto,	 H.	 Adam,	
“MobileNets:	Efficient	Convolutional	Neural	Networks	for	Mobile	Vision	Applications,”	ARXIV	2017.	
12	François	Chollet,	et.	al.,	“Keras:	The	Python	Deep	Learning	Library,	2015,	”	See:	https://Keras.io.		



	
Figure 6 Typical training statistics for neural network training. Stage 1 shows rapid performance gains. 
Stage 2 shows slowed performance gains. Stage 3 shows overfitting of training set, and decreased 
performance on validation set. 

BPA	and	MBC	were	tested	using	the	published	Gabor	filter	tunings	(filter	sizes)	described	by	
Serre5	et	al	
	

GaborLR:	{5,7,9,11,13,15,17,19,21,23,25,27,29,31,33,35}	
	
and	an	alternate	set	of	tunings	
	

GaborHR:	{3,5,7,9,11,13,15,17,19,21,23,25,27,29,31,33}.	
	
which	produce	6,148	features	from	a	128x128	pixel	chip.	
	
We	also	tested	the	two	classifiers	using	power	spectral	density	(PSD)	features	derived	from	
the	discrete	Fourier	transform	of	the	chip	with	a	cosine	window.	For	a	128x128	chip,	there	
are	 64x64	 =	 4,096	 unique	 power	 spectral	 values.	 Since	 the	 number	 of	 clutter	 chips	 was	
much	greater	than	the	number	of	target	chips,	we	augmented	the	training	set	by	generating	
permutations	of	the	target	chips	with	constrained	random	translations,	rotations,	and	scales	
as	was	done	with	the	CNN.	

	
Figure	 7	 summarizes	 the	 receiver	 operating	 characteristic	 (ROC)	 performance	 of	 the	
challenge	problem	classifiers.	All	three	classifiers	were	trained/validated	on	the	SA	and	AF	
data	sets	and	 tested	on	 the	RUS	data	set.	The	CNN	had	 the	best	performance	(top	curve),	
which	was	much	 lower	 than	expected	 (for	 reasons	 that	will	be	discussed	 later).	The	MBC	
classifier	 using	 PSD	 features	was	 slightly	 below	 that	 of	 the	 CNN,	 followed	 by	MBC	 using	
GaborHR	 and	 GaborLR	 features,	 respectively.	 The	 best	 MBC	 performance	 was	 achieved	
using	a	sampling	fraction	of	0.01	and	a	bagging	parameter	K=1000.	The	performance	of	BPA	
for	all	feature	options	was	significantly	below	that	of	the	MBC.	
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Figure 7 Challenge problem neural network classifier performance summary. 

Discussion 
It	 is	 conjectured	 that	 the	 behavior	 of	 the	 MBC	mimics	 that	 of	 the	 CNN,	 at	 least	 for	 this	
problem.	Although	it	not	necessarily	a	practical	consideration,	one	wonders	 if	 it	would	be	
possible	to	emulate	(or	at	least	approximate)	the	behavior	of	a	CNN	with	a	MBC	containing	
all	of	the	training	data	and	augmentations	(random	permutations).		
	
The	relatively	poor	test	performance	of	the	CNN	is	consistent	with	the	pattern	of	its	training	
performance	that	peaked	very	early	 in	 the	 training	process	(Figure	6).	 It	 is	 likely	 that	 the	
performance	of	the	CNN	and	other	classifiers	was	limited	in	this	problem	by	the	resolution	
(level	 of	 detail)	 of	 the	 data	 and	 in	 the	 similarity	 (in	 many	 cases)	 between	 vehicles	 and	
background	clutter,	especially	small	buildings.		
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