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ABSTRACT  

A fusion approach is described that combines texture features from high-resolution panchromatic imagery with land 
cover statistics derived from co-registered low-resolution global databases to obtain high-resolution land cover maps. 
The method does not require training data or any human intervention. We use an MxN Gabor filter bank consisting of 
M=16 oriented bandpass filters (0-180°) at N resolutions (3-24 meters/pixel). The size range of these spatial filters is 
consistent with the typical scale of manmade objects and patterns of cultural activity in imagery. Clustering reduces the 
complexity of the data by combining pixels that have similar texture into clusters (regions). Texture classification 
assigns a vector of class likelihoods to each cluster based on its textural properties. Classification is unsupervised and 
accomplished using a bank of texture anomaly detectors. Class likelihoods are modulated by land cover statistics derived 
from lower resolution global data over the scene. Preliminary results from a number of Quickbird scenes show our 
approach is able to classify general land cover features such as roads, built up area, forests, open areas, and bodies of 
water over a wide range of scenes.  
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1. INTRODUCTION  
Land cover classification is important in mapping, navigation, automatic target recognition, and other applications. 
Historically much of the progress in land cover classification has been the result of exploiting spectral differences 
between land cover types. Sensors like Landsat were built specifically to support land use/cover classification and 
related applications. However the widespread availability of high resolution panchromatic imagery collected by 
commercial sensors has led to renewed interest in algorithms for panchromatic image classification.  

 

We describe an algorithm that uses low-resolution terrain/feature databases to control a texture-based panchromatic 
image classifier. Our classifier operates on a multi-resolution texture representation of the image computed by a bank of 
Gabor filters (Section 2). Clustering reduces the complexity of the data by combining pixels that have similar texture 
into clusters (Section 3). Land cover classification is unsupervised and accomplished using a bank of texture anomaly 
detectors (Section 4). Class likelihoods are modulated based on land cover statistics derived from lower resolution global 
data over the scene. Preliminary results from a number of Quickbird pan image scenes that span a range of climates and 
seasons are presented along with conclusions in Section 5. 

 

2. TEXTURE FEATURE EXTRACTION 
Texture feature extraction starts with an MxN Gabor filter bank consisting of M oriented bandpass filters at N resolutions 
(bandpass frequencies), specifically M=16 filters (0-180°) at N=4 resolutions from 3-24 meters wide (at a typical image 
resolution of 0.67 meters/pixel imagery): 
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with 

um = xcosθm + ysinθm
vm = −xsinθm + ycosθm

 

 

where x and y are image coordinates, and θm is the orientation of the m-th filter. The other variables are described by 
Serre and Riesenhuber [1]. The output from the filter bank is a set of MxN = 64 images 

 

f x ,y (m,n) = BRIx ,y ∗ gx ,y (m,n)  

 

where BRI is the pan brightness image. The filter bank is implemented in the frequency domain with MN+1 FFTs per 
image. 

 

Recognizing that roads, built up areas, and other kinds of structured features can appear at any orientation we rotate the 
Gabor features. If p(n) is the direction with the maximum response at resolution n, the rotated features are 

 

hx ,y (m,n) = f x ,y m+ p(n)modM ,n( ) . 

 

Linear features like roads have an anisotropic power spectral density [2] with most of the power in the same direction at 
each resolution. Rectilinear features and non-structured textures can have anisotropies in different directions at each 
resolution. We compute the dominant direction across resolution using a voting scheme. The voting method adds two 
votes per resolution in an M-element accumulator array. The first vote is in the direction with the largest response, the 
second vote in the direction with the next highest response, and so forth for a total of eight votes across all N=4 
resolutions. The orientation m* is the direction with the largest number of votes. 

 

Instead of using the raw Gabor filter outputs we developed a set of physically-based texture features for classification. 
The first, linearity (LIN) responds to surface features oriented in a particular direction like roads, waterways, hedgerows, 
etc. 

 

LINx ,y (n) = 1
3 hx ,y
m=0,1,M−1
∑ (m,n)  

where 

 

hx ,y (m,n) = f x ,y m+m*modM ,n( )  

 

 

The second, rectilinearity (REC) is designed to respond to features with a secondary orientation that is roughly 
perpendicular to the primary orientation like fields, buildings, vehicles, etc. 

 



 
 

 
 

 

RECx ,y (n) = 1
3 hx ,y
m=M /2−1,M /2,M /2+1

∑ (m,n)  

 

The filters added on either side of the primary and secondary orientations provide a certain tolerance to linear features 
that are not perfectly straight and rectilinear features not exactly at right angles (e.g., which occurs when a rectangular 
feature is viewed off-nadir). A third nonstructured texture (TXT) feature was designed to respond to other textures like 
trees, rough, and dissected terrain 

 

TXTx ,y (n) = 1
10 hx ,y (m,n)−3× LINx ,y (n)−3× RECx ,y (n)
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Each of these features is computed at N=4 resolutions for a total of 13 features including brightness (BRI).  

 

3. CLUSTERING 
Large images (scenes) are divided into smaller sized tiles (typically 1024 x 1024 pixels) for processing. Texture features 
are clustered to reduce computational complexity for downstream processing from 106 pixels to about 102 texture 
clusters per tile. Tile clusters are then re-clustered with those from the other tile clusters to produce a set of super-
clusters, which describe similar textures within the scene. The K-means algorithm is used both for tile and scene 
clustering.  To promote the formation of compact clusters we divide each feature by its global mean:  

φ(i)
E φ(i)!" #$

 

 

where the expectation is computed over the image, Φ = φ(i)"# $%  is a lexographic ordering of the 12 physically-based 

texture features plus brightness; i.e., 
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The number of clusters per tile and per scene are set by the user, typically K=256. After clustering the texture feature 
vector Φk  represents the average values of the 13 features within the k-th cluster. 



 
 

 
 

 

4. LAND COVER CLASSIFIER 
Global terrain and feature data over the scene controls the classification process. We use 30 arc-second (1 km) global 
AVHRR land cover class data [3] to estimate the relative frequency of classes within the scene being processed. The 
AVHRR data is based on a 14-class categorization scheme: 

 

• Water 
• Evergreen Needleleaf Forest 
• Evergreen Broadleaf Forest 
• Deciduous Needleleaf Forest 
• Deciduous Broadleaf Forest 
• Mixed Forest 
• Woodland 
• Wooded Grassland 
• Closed Shrubland 
• Open Shrubland 
• Grasslands 
• Cropland 
• Barren 
• Urban and Built-up 

 

These classes are derived from spectral data and so do not extend well to texture classification. A smaller number of 
classes that can be computed from brightness and texture are used instead: 

 

• Linear features 
• Rectilinear features 
• Non-structured features 
• Open areas 
• Water/shadow 

 

Not surprisingly the first three classes have the same meaning as the three physically-based, texture-derived features 
described earlier – linearity, rectilinearity, and non-structured texture. Open areas can be understood as regions that lack 
texture. Water and shadows are those parts of open areas that relatively dark. 

 

To detect textured regions we compute the following normalized statistics:  

 

dk
LIN (n) =

LINk (n)−µLIN (n)
σ LIN (n)

dk
REC (n) =

RECk (n)−µREC (n)
σ REC (n)

dk
TXT (n) =

TXTk (n)−µTXT (n)
σ TXT (n)

 

 

 



 
 

 
 

 

where k is the cluster and n is the resolution. The pixels in each cluster are obtained from the cluster map k(x, y) , which 
is a by-product of the clustering process. The means and variances are computed as averages over all of the clusters in 
the scene 
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For each cluster at each resolution we 1) find the class with the greatest statistical deviation, and 2) determine if the 
deviation exceeds a threshold. The threshold depends on the relative fraction of textured area, which is based, in turn, on 
the global landcover data over the scene. An empirically-derived mapping was developed for Quickbird (Table 1). The 
values depend primarily on resolution, although season, culture, population density, and other factors are also important. 

 

Table 1 Mapping global landcover to texture fractions 

Class Fraction Class Fraction Class Fraction 
Water 0 Evergreen Needleleaf 

Forest 
0.8 Evergreen 

Broadleaf Forest 
0.8 

Deciduous 
Needleleaf 
Forest 

0.8 Deciduous Broadleaf 
Forest   

0.8 Mixed Forest 0.8 

Woodland 0.8 Wooded Grassland   0.5 Closed 
Shrubland 

0.3 

Open Shrubland 0.3 Grassland 0.1 Cropland 0.2 
Bare Ground 0.1 Urban and Built Up 0.9   
 

The initial textured/non-textured decision at resolution n is: 

 

ωk (n) =
argmax dk

LIN (n),dk
REC (n),dk

TXT (n){ }, if max dkLIN (n),dkREC (n),dkTXT (n){ }> t
OPEN , otherwise
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The detection threshold satisfies 

p0 =
1
2π

e−x/2
0

t

∫ dx  

 

where p0 is the fraction of the image that is textured, which is computed as an average of the global landcover data over 
the scene. The textured/non-textured decisions at the four resolutions are combined by picking the class that “fires” 
most; i.e., one of 

 

{LINEAR,RECTILINEAR,NONSTRUCTURED,OPEN} 



 
 

 
 

 

  

  

  

  
Figure 1 ALE landcover maps (right) – from top to bottom: northern Asia, southern Asia, northern Europe, and southern 
Africa. Reference images (left) courtesy Google Earth. 



 
 

 
 

 

 

In the event of a tie, the class with the greatest deviation is selected. Water and shadows are detected from brightness. 
Using a similar idea,  

 

ωk =
WATER / SHADOW , if BRI < b*
{LINEAR,RECTILINEAR,UNSTRUCTURED,OPEN}, otherwise
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The brightness threshold is the value that comes closest to satisfying 

 

F(b*) =%Water  

 

where F is the cumulative distribution of the brightness image histogram. The percentage of the scene that is water is 
estimated from GTOPO30 – 30 arc-second (1 km) global elevation data [4] as its resolution is better than the AVHRR 
land cover. If the elevation is less than or equal to zero or if the slope is zero, we infer water. The method tends to over-
estimate the amount of water but can be refined using histogram analysis techniques [5]. 

 

5. RESULTS AND CONCLUSIONS 
Figure 1 shows preliminary results from four scenes processed. The color scheme is: 

 

• linear features – gray 
• built up areas – red 
• open areas – yellow 
• non-structured features such as forests and rough terrain – green 
• water/shadows – blue 

 

In the first scene (northern Asia) acquired in winter there is good separation between built-up, forested areas, and water. 
Hedgerows between fields are extracted as linear features along with roads, rivers, and drainage features. Where this 
scene was acquired in winter with the sun low in the sky, the second scene (the southern Asia) was taken in the summer. 
This is a good test of the landcover classifier with respect to seasonal differences. Some built up areas that contain 
smaller structures like mud huts are misclassified as natural non-unstructured terrain. Neither of the previous scenes 
contains significant vegetation. A large portion of third scene (northern Europe) taken in summer is vegetated and so is 
another good test of the classifier. The results show very good discrimination between vegetation, built areas, roads, 
open areas, and water. The fourth scene is a fall image in southern Africa. Gaps in the road network occur here and in 
other scenes where roads are wider than the largest filter in the filter bank. In half-meter resolution imagery a six-lane 
divided highway (which is at least 6x16’ wide) is wider than the passband of the largest Gabor filter (24 meters). A 
possible solution is to add another filter bank, which will increase computational complexity by 20%. Gaps also occur 
when the contrast between the road and surrounding terrain is low. 

 

Since the classifier uses only brightness to discriminate water, there is confusion between water and shadows. A finer-
grained method is required to distinguish the two. There is also some confusion between built up areas and natural 
terrain. Although one would think manmade and natural features are easily separated there are many situations where it 
is not the case. Examples include forests with tree shadows forming linear and rectilinear patterns, hamlets, groupings of 
mud huts, and other small structures in irregular (non-rectilinear) arrangements, and others. A possible solution is to 



 
 

 
 

 

modulate classification decisions in those areas, e.g., varying the range of scales (resolutions) over which manmade 
features are detected, based on cultural context. However the fact remains that surface features and lighting can and will 
conspire to create regular patterns that can be difficult for the texture classifier to distinguish from man-made activity, 
and vice versa. 
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