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Abstract 

 
The effect of errors in ground truth on the estimated thematic accuracy of a 
classifier is considered. A relationship is derived between the true accuracy 
of a classifier relative to ground truth without errors, the actual accuracy of 
the ground truth used, and the measured accuracy of the classifier as a 
function of the number of classes. We show that if the accuracy of the 
ground truth is known or can be estimated, the true accuracy of a classifier 
can be estimated from the measured accuracy. In a series of simulations our 
method is shown to produce unbiased estimates of the true accuracy of the 
classifier with an uncertainty that depends on the number of samples and 
the accuracy of the ground truth. A method for determining the relative 
performance of two or more classifiers over the same area is then 
discussed. Results indicate that as the number of samples increases one can 
effectively differentiate between the performance of the classifiers using 
inaccurate ground truth. It is argued that relative accuracies computed 
using a large number of inaccurate ground truth points are more 
representative of the true relative performance of the classifiers since they 
are being evaluated over a larger portion of the scene. An example is 
presented that uses this method to evaluate the relative performance of two 
Landsat classifiers.  

 
 

1. INTRODUCTION 
 
 Accuracy assessment has become an important topic given the increased use of 
remotely sensed imagery in mapping, environmental monitoring, and other application 
areas. In order to estimate thematic accuracy, ground truth (i.e., in situ measurements) 
and/or image truth (in effect, ground truth inferred from imagery) must be collected. Two 
key questions relate to the number and distribution of samples. The number of samples 
depends largely on the level of confidence and is well-understood. However, the manner 
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in which the samples are selected within the study area remains somewhat of an art due to 
the complexity of the spatial processes involved.  
 
 The accuracy of ground truth is rarely known but is usually assumed to be correct. 
Ground truth is almost never completely accurate due to differences between the time the 
imagery was acquired and the ground truth collected, inconsistencies in assigning classes 
to ground truth, and other factors, many of which are based on human judgment. If 
ground truth is assumed to be correct but is not, classification errors are blamed on the 
algorithm or the data, wrongly lowering the classification accuracy (Congalton 1991).  
  
 Currently the variability of the land use patterns is considered to exhibit scaling 
(power-law) behaviour. This suggests that the accuracy of the classifier is of critical 
importance. The estimation of the scaling exponents of the power-law could be assessed 
by using the detrended fluctuation analysis, which has already proved its usefulness in 
several complex systems, like the surface air-pollutants (Varotsos et al 2005), the total 
ozone content (Varotsos 2005) and the global tropospheric temperature (Varotsos and 
Kirk-Davidoff  2006). 
 
 This paper considers the accuracy of ground truth and its effect on thematic 
accuracy. In particular the following questions are considered: What is the effect of errors 
in ground truth on classification accuracy? What is the relation between the number of 
samples collected and the accuracy of the samples on classification accuracy? In Section 
2 we begin by reviewing the relationship between the number of samples and the 
confidence of the estimated classification accuracy. A brief discussion of random and 
stratified random sampling is also provided. Our accuracy assessment approach is 
described in Section 3 which models the effect of errors in ground truth on the estimated 
accuracy of a classifier. Results of simulations to verify our model are presented. In 
Section 4 we apply our methodology to estimate the relative performance of two Landsat 
classifiers. Implications of our approach and areas for future work are discussed in 
Section 5. 
 

2. BACKGROUND 
 
 Thematic accuracy is usually expressed in the form of a confusion matrix P(k,k') 
which summarizes the number of times the true class k was assigned class k' by the 
classifier. If the confusion matrix is normalized so that 
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 Ground truth (i.e., in situ measurements) and/or image truth (in effect, ground 
truth inferred from imagery) are typically used to estimate of the accuracy of a classifier. 
Two questions often asked are:  
 
• How many samples are required to obtain a reliable estimate of the classification 

accuracy?  
• Where in the study area should the samples be acquired to obtain an unbiased 

estimate of the accuracy? 
 
 The answer to the first question depends, in part, on the level of confidence 
required of the estimate. Various approaches for estimating the number of samples 
required are reviewed by Janssen and van der Wel (1994). Often the binomial distribution 
is used to model the sampling process. For N total samples, the probability that n samples 
are correct is given by 
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The upper and lower limits of the estimated classification accuracy depends on the 
number of samples and on the confidence κ. These upper and lower limits α+ and α− are 
calculated from the binomial distribution 
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respectively where N− = Nα− and N+ =  Nα+ are the minimum and maximum values that 
satisfy the above equations. Fig. 1 plots the upper and lower limits of the classification 
accuracy as a function of the number of samples required to achieve a confidence of 0.95. 
Fig. 2 plots the lower limit of the classification accuracy for three levels of confidence. It 
is often concluded from such curves that several hundred samples are required in most 
applications to obtain satisfactory estimates.  
 
 The second question concerning the manner in which the samples are selected is 
more complex. Congalton (1988) states that the spatial complexity of a given 
environment dictates the appropriate sampling scheme to use. Based on a simulation 
study he concluded that simple random sampling produced results with the least amount 
of bias and was adequate for most situations. A disadvantage of random sampling is that 
the number of samples per category is, on average, proportional to the area of the 
category. This poses a problem in situations where important categories such as roads, 
small bodies of water, buildings and other isolated structures make up a very small 
fraction of the image. In such cases, random sampling may fail to generate a single 
sample for some categories.  
 
 Another method known as stratified random sampling generates a given number 
of samples per stratum, e.g., within each land cover category. Todd et al (1980) used this 
approach to estimate the accuracy of a classification map derived from Landsat MSS. A 
disadvantage of this kind of sampling scheme is that it makes it difficult to evaluate 
multiple classifications over the same area since the sampling is derived from the 
classifications. 
 
 Our work is concerned, in part, with the evaluation of multiple classifiers and data 
sources over the same area. In particular, we are interested in determining the best 
classifier based on its performance over a limited number of study areas. Sampling plans 
are based largely on the diversity and spatial distribution of land cover. However, 
classification performance depends on other factors as well. For example, the topography 
modulates the spectral response by a multiplicative factor that is a function of the slope. 
Variations in moisture and organic content affect the spectral response of exposed soils. 
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The spectral response of vegetation is affected by moisture stress, disease, and other 
factors. Different classifiers may be more or less sensitive to these and other effects. 
Depending on the complexity of the terrain and the environment, more ground truth may 
be required to insure that these factors are represented in the sample.  
 
 
 

3. ACCURACY ASSESSMENT MODEL 
 
 Our goal is to begin to understand the effect of errors in ground truth; i.e., how 
does inaccurate ground truth affect estimates of classification accuracy. Our approach 
involves the development of an error model that can be used as a basis for simulating the 
effect of ground truth errors as a function of the error rate, the number of samples, and 
other parameters. 
 Ground truth is rarely if ever completely accurate due to differences between the 
time the imagery was acquired and the ground truth collected, inconsistencies in 
assigning classes to ground truth, and other factors, many of which are based on human 
judgment. Let T = {tn} be a series of ground truth samples tn which take on integer values 
between one and K, where K is the number of classes. We assume that the tn cannot be 
observed directly. Instead we observe another sequence R = {rn} where the rn are 
observations of the underlying ground truth tn. If the tn are independent identically 
distributed random variables, the probability that the n-th observation rn = k given the 
corresponding ground truth sample tn = k' is 
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for K ≥ 2. This model assumes errors are distributed uniformly over all classes. Since  
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the observations can be viewed as ground truth with an accuracy of ρ. 
 
 Now to determine the effect of errors in ground truth on classification accuracy, 
we derive the accuracy of a classification relative to R and compare this result to the true 
accuracy measured against T. The true accuracy of classifier A is 
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where     
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P
A ,T (a = k ,t = " k )  is the joint probability (normalized confusion matrix). The 

accuracy of A relative to R is similarly defined 
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Clearly there are correlations between A and R, since a classifier uses R to produce A; 
however, it can be shown that classifiers can be somewhat tolerant of errors in their 
training data (Carlotto 1996). We therefore provisionally assume that A and R can be 
treated as conditionally-independent processes, and so expand (10) as: 
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which can be rewritten as 
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for     
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In other words classification errors occur with equal frequency across all classes. 
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where the last step follows from the substitution of parameters from the confusion 
matrices. The accuracy of A compared to R is thus 
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 Fig. 3 plots the relative accuracy of a classifier whose true accuracy is α = 0.8 
against a reference whose accuracy varies over the range 0 ≤ ρ ≤ 1. The second term in 
the above equation is the probability that A and R both make the same error. Its effect is 
relatively small (provided α and ρ are not too small) and decreases as the number of 
classes increases (Fig. 4). 
 
 A simulation was performed to verify the correctness of the above model. We 
start with a uniform random number generator T which generates numbers between 1 and 
K. Observations are simulated by another independent random process R that alters a 
given fraction (1-ρ) of the random numbers generated by T. The classifier is modeled by 
a third independent random process A that alters a given fraction (1-α) of the random 
numbers generated by T. The relative accuracy γ is estimated from the joint probability 
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distribution PA,R computed over a given number of samples N. Fig. 5 shows excellent 
agreement between the results of the simulation and the model for N=1000 samples.  
 
 Fig. 6 plots the relative accuracy of two classifiers A and B whose true accuracies 
are α and β. It is noted that at ρ = 1/K, the relative accuracies intersect, γA = γB = 1/K.  
 
 We are now prepared to address the relationship between the number of samples 
collected and the accuracy of the samples on the relative accuracy of a classifier. Let α+ 
and α− be the upper and lower limits of the true accuracy of classifier A at a certain level 
of confidence for a given number of samples. Using (15), if we assume that the accuracy 
of R is ρ, the upper and lower accuracies of A relative to R are defined as 
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respectively, provided ! >1 K . In reality we do not know the accuracy of R precisely 
since it too is estimated from a limited number of samples. If ρ+ and ρ− are the upper and 
lower limits of the accuracy of R relative to T then the corresponding limits of the 
accuracy of A relative to R are (Fig. 7) 
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>1 K . In other words, the uncertainty in γ depends on the 

uncertainty in α and ρ.  
 
 The above effect can be observed in the simulations as the number of samples 
decreases. Fig. 8 plots the results of the previous simulation using fewer samples 
(N=100). The computed accuracies tend to scatter within a wedge-shaped region around 
the line     

! 

" = #$ + (1% #)(1%$ ) ( K %1) . 
 

 Now, to answer the question concerning the relationship between the accuracy of 
the ground truth and the true accuracy of a classifier, we work backwards, starting with 
the measured accuracy of A relative to R to infer the true accuracy of A relative to T as a 
function of the accuracy of R relative to T. Strictly speaking, we cannot invert the 
observation model to determine T and hence PA,T from PA,R and PR,T since it would lead 
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to a model that is inconsistent with the one presented. Instead we extrapolate the relative 
accuracy γA computed at ρ = ρ0 to estimate what the true accuracy αest would be at ρ = 1, 
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In working backwards, the uncertainty in the accuracy of ρ and γ is amplified in the 
uncertainty in the estimate of the true accuracy αest as ρ → 1/K (compare Fig. 9a and b).  
 
 Instead of deriving the exact form of the above distribution, histograms were 
computed over a large number of trials for different combinations of parameter values. In 
each trial we generate a ground truth sequence T, and from it, produce two sequences. A 
sequence of observations R is simulated by altering (1-ρ) of the random numbers 
generated by T. This is treated as ground truth with accuracy ρ. Another sequence which 
is treated as the output of a classifier A with accuracy α is produced by altering (1-α) of 
the random numbers generated by T. For each trial we compute ρ and γA from the above 
sequences and estimate the accuracy of A using (18). We note that if K is large and 
neither γA nor ρ are too small,  
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For a large number of samples, ρ and γA can be approximated by normal distributions. 
The ratio of normal random variables has a Cauchy density (Papoulis 1965).  
 
 Although αest is not normally distributed we will use the expected value µ and the 
standard deviation σ to gain some insight into the behavior of the estimate under different 
circumstances. First, the effect of different ground truth accuracies and different sample 
sizes were explored. Statistics are shown in Fig. 10 for α = 0.8, based on N=50, 100, and 
200 samples and K=10 classes over the range 0.3 ≤ ρ0 ≤ 1. The statistics were computed 
over 1000 trials. As the accuracy of R decreases, the estimates become noisy, and the 
standard deviation increases. However as the number of samples increases, the standard 
deviation decreases significantly.  
 
 Next we compared two classifiers A and B where α = 0.8 and β = 0.7 for N=50 
samples and K=10 classes over the same range 0.3 ≤ ρ0 ≤ 1 (Fig. 11). Again, the 
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estimates appear to be unbiased. The standard deviation does not appear to depend on the 
actual accuracy of the classifier.  
 
 Finally the effect of the number of classes are assessed for K=10 and 20 classes 
based on N=50 samples for α = 0.8 over the range 0.3 ≤ ρ0 ≤ 1 (Fig. 12). The number of 
classes does not appear to affect the mean. In this particular example the standard 
deviations for K=10 and 20 are about the same until ρ = 0.6 at which point the standard 
deviation appears to increase for the smaller number of classes.  
  
 We then considered the relative performance of two classifiers A and B with true 
accuracies α and β. Define Δα = α+ − α−, Δβ = β+ − β−, and Δρ = ρ+ − ρ−. As N 
becomes large, Δα, Δβ, and Δρ will approach zero. The uncertainty in the measured 
accuracies ΔγA and ΔγB will thus tend to zero. If α < β, then γA < γB provided ρ > 1/K. 
Going the other way, if we observe that γA < γB it can be concluded that α < β. Thus as 
the number of samples increases we should be able to determine if classifier B is better 
than A based on their measured accuracies γA and γB over a wide range of reference 
accuracies ρ.  
 
 Additional simulations were performed to measure the probability (relative 
frequency) γA < γB as a function of the difference between their true accuracies |α - β|,  
the reference accuracy ρ, the number of samples N, and the number of classes K. Let the 
probability that γA < γB be denoted PA<B. The results from 1000 trials are plotted in Fig. 
13 for α = 0.7, β = 0.8, K=10 classes, and N=50, 200, and 800 samples. As N increases 
the curve tends to a step function at ρ = 0.1. Next we increased the difference between α 
and β. Fig. 14 plots PA<B for α = 0.7 and β = 0.9 as a function of the accuracy ρ based on 
K=10 classes and N=100 samples. As |α - β| increases the ability to differentiate between 
the classifiers again increases. Fig. 15 shows the effect of the number of classes K. In all 
plots PA<B ≈ 1/2 occurs at 1/K. Based on these results we conjecture that as the number 
of samples increases, if classifier B is better than A, the probability that γA < γB 
approaches one provided ! >1 K . 
  
 We can thus differentiate between the performance of two or more classifiers at a 
level of confidence that depends on the accuracy of the ground truth, the difference 
between their true accuracies, the number of classes, and the number of samples. 
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4. LANDSAT CLASSIFICATION EXPERIMENT 
 
 Often in developing algorithms for exploiting remotely sensed imagery one is 
interested in the relative performance of one algorithm to another. In this section we 
apply the above method of assessing relative classification accuracy to determine which 
of two Landsat classifiers over a given area is better. Earlier we stated an opinion to the 
effect that a classifier should be tested over a very large number of points within a scene 
particularly if topographic, environmental, and other factors have not been taken into 
account. Here we compare two classifiers against a reference classification on a pixel-by-
pixel basis. Two classifications of a Landsat TM image over rural Virgina, designated A 
and B, are shown in Fig. 16. A is a maximum likelihood classification of the area and B is 
a spectral shape classification (Carlotto 1998). 
 

Ground truth data T were obtained at N=77 points within the scene. We used this 
to classify a 5 m/pixel M7 image that was coregistered to the Landsat to derive a 
reference classification (Fig. 17). This image was treated as an image of M=33,772 
observations R of the underlying ground truth T. The reference classification image R was 
compared to the ground truth T to produce an estimate of its accuracy ρ based on N 
samples. The outputs from classifiers A and B were compared to the reference 
classification to produce estimates of their relative accuracies γA and γB based on M 
samples. With our model (19) we estimated the true accuracies αest and βest of A and B, 
again based on M samples. These values were then compared to their true accuracies α 
and β measured against the ground truth T from N samples. 
 
 ISODATA was used to interactively cluster and classify the M7 data. Image 
clustering and classification were performed in two phases. First the data were divided 
into 30 clusters automatically; i.e., without supervision. The clusters were then classified 
by overlaying the clusters onto different M7 band combinations. Classes were assigned to 
clusters according to the classification criteria defined in Table 1. For this scene 12 of the 
16 possible classes were present (thus K=12). Clusters that could not be assigned a class 
were further split by masking the clusters, reapplying the ISODATA algorithm, and 
interactively classifying the resultant sub-clusters. Any remaining sub-clusters that could 
not be assigned a class were not classified. The labeled clusters were then merged into a 
final classification image.  
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 Table 2 summarizes the computed accuracy of the reference image R and 
classifiers A and B compared to ground truth, and the estimated true accuracies of A and 
B based on their measured accuracies. The estimated true accuracies αest and βest are 
within the 99% confidence intervals defined by the actual measured accuracies α and β. 
From the accuracies computed against the ground truth one might conclude that classifier 
A is better than B. However, there is considerable overlap in the ranges of A and B since 
the estimates were obtained over only N=77 samples.  
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where n0 is the point where the distributions intersect     
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is the error function. For α = 0.69, β = 0.58 and N = 77, P

error
! 0.15 . 

 
 The relative accuracies γA and γB were computed over the entire image 
(M=33,772 samples). For such a large number of samples, the uncertainty in γA and γB is 
negligable. On the other hand, the uncertainty in the actual accuracies αest and βest 
estimated from γA, γB and ρ depends on the uncertainty in ρ which is computed over N 
samples. However recall that for two classifiers, we were able to demonstrate that γB > 
γA implies βest > αest if ρ > 1/K. For N=77 samples, ρ = 0.84, and K=12 classes, the 
probability that ρ < 1/K is 
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which is an extremely small number. Although there is a significant amount of 
uncertainty in their absolute accuracies (because of the relatively small number of 
samples used to estimate ρ), there is virtually no uncertainty in their relative accuracies 
(because of the relatively large number of samples used to estimate γA and γB). We thus 
conclude that classifier B is better than A. 
 

5. DISCUSSION AND RESULTS 
 
 A different view of accuracy assessment has been presented - one that is based on 
trading-off accuracy for sample size. We have shown that when the ground truth is 
inaccurate, modeled in this paper by observations R of the underlying ground truth T, the 
true accuracy of a classifier A compared to T can be estimated from the measured 
accuracy of A compared to R and the accuracy of R compared to T. Based on a series of 
simulations the resultant estimates appear to be unbiased for the model used. The 
uncertainty in the estimated accuracy depends on the number of samples and the accuracy 
of the ground truth.  
  
 We have gone on to show that as the number of samples increases the ability to 
determine if one classifier is better than another increases even when the ground truth is 
inaccurate. This result has implications in efforts that are evaluating the performance of 
different classification schemes where it is not possible to collect accurate ground truth. 
Often a basis for comparison is created from coregistered aerial photographs or other 
sources. In such cases we have shown that it is possible to effectively use this kind of 
data to determine the relative performance of classifiers even when its true accuracy is in 
doubt. 
 
 Several areas for future work remain. Our model assumed that all classes occur 
with equal frequency, and that classification errors occur with equal frequency across all 
classes. In most scenes a few classes tend to dominate. Also, depending on the classifier, 
errors occur more frequently between spectrally similar classes (evergreen and mixed 
forests) than between spectrally dissimilar classes (water and bare soil). Different error 



14 

models need to be evaluated as well as the possibility of using the confusion matrices 
themselves. We also need to determine if there is a relationship between classification 
errors and errors in ground truth (i.e., is the conditional independence assumption valid?). 
Ultimately, a better understanding of the sources of error in ground truth and their effect 
on classification accuracy is needed. 

 
References 

 
Congalton, R.G., "A comparison of sampling schemes used in generating error matrices 
for assessing the accuracy of maps generated from remotely sensed data," 
Photogrammetric Engineering and Remote Sensing, Vol. 54, No. 5, May 1988, pp 593-
600. 
 
Congalton, R.G., "A review of assessing the accuracy of classifications of remotely 
sensed data," Remote Sensing of the Environment, Vol. 37, 1991, pp 35-46. 
 
Janssen, L.L.V., and van der Wel, F.J.M., "Accuracy assessment of satellite derived land-
cover data," Photogrammetric Engineering and Remote Sensing, Vol. 60, No. 54 April 
1994, pp 419-424. 
 
Papoulis, A. Probability, Random Variables, and Stochastic Processes, McGraw Hill, 
1965, New York, pp 197-198. 
 
Todd, W.J., Gehring, D.G., and Haman, J.F., "Landsat wildland mapping accuracy," 
Photogrammetric Engineering and Remote Sensing, Vol. 46, No. 4, April 1980, pp 509-
520. 
 
Carlotto, M.J., "Using maps to automate the classification of remotely sensed imagery," 
Proceedings SPIE,, Vol. 2758, Orlando, Florida, 1996. 
 
Carlotto, M.J., "Spectral Shape Classification of Landsat Thematic Mapper Imagery," 
Photogrammetric Engineering and Remote Sensing, Vol. 64, No. 9, September 1998. 
 
Varotsos, C., “Power-law correlations in column ozone over Antarctica,” International 
Journal of Remote Sensin, Vol. 26, No 16, pp 3333-3342, 2005. 
 
Varotsos, C, and Kirk-Davidoff, D., “Long-memory processes in ozone and temperature 
variations at the region 60 degrees S — 60 degrees N,” Atmospheric Chemistry and 
Physics, Vol. 6, pp 4093-4100, 2006. 
 
Varotsos C., Ondov, J. and Efstathiou M., “Scaling properties of air pollution in Athens, 
“Greece and Baltimore, Maryland,” Atmospheric Environment, Vol. 39, pp 4041-4047, 
2005. 
 



15 

 
 Table 1 Classes used in Landsat accuracy assessment. 

 
Level 1 Class Criteria Level 2 Class Criteria 
Developed > 50% synthetic High Intensity > 80% synthetic  
  Low Intensity 50-80% synthetic 
  Roads  
Herbaceous Land > 50% herbaceous Crops managed 
  Pasture unmanaged 
  Other  
Woody > 50% woody Deciduous > 67% deciduous 
  Evergreen > 67% evergreen 
  Mixed  
Barren < 50% vegetated   
Wetland  Shore < 50% vegetated 
  Emergent > 50% herbaceous 
  Woody > 50% woody 
Water    
Snow/Ice    
Other/Indeterminate    

 
 

Table 2 Summary of results from Landsat classification experiment. 
 

 
Data 

Accuracy Measured 
Against Ground Truth  
(Based on 77 samples) 

Relative 
Accuracy 
(Based on 

33772 samples) 

Estimated 
Accuracy 

Reference 
Classification, R 

ρ = 0.84 ρ− = 0.73 
ρ+ = 0.92 

  

Classifier A α = 0.69 α− = 0.58 
α+ = 0.79 

γA = 0.5 αest = 0.59 

Classifier B β = 0.58 β− = 0.47 
β+ = 0.69 

γB = 0.56 βest = 0.66 
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Fig. 1 κ = 0.95 confidence interval for α = 0.8 as a function of the number of samples, N. 
 

 
Fig. 2 Lower limits of classification accuracy α−  at three confidence levels for α = 0.8. 
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Fig. 3 Relative accuracy γ  of a classifier with true accuracy α = 0.8  for K=10 classes as 

a function of the ground truth accuracy ρ. 

 
Fig. 4 Effect of the number of classes K on the relative accuracy γ  of a classifier with 

true accuracy α = 0.8 as function of the ground truth accuracy ρ. 
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Fig. 5 Simulation results compared to model predictions for α = 0.8, K=10, and N=1000. 

 
 

 
Fig. 6 Relative accuracies of two classifiers having true accuracies α = 0.8 and β = 0.6. 
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Fig. 7 Uncertainty in estimated classification accuracy depends on the uncertainty in the 

true accuracy of the classifier and the accuracy of the ground truth. 
 

 
Fig. 8 Simulation results for α = 0.8, K=10, and N=100. α+ and α- limits correspond to 

κ=0.99 confidence interval. 
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(a) Lower accuracy ground truth 

 

 
(b) Higher accuracy ground truth 

 
Fig. 9 Estimating the true accuracy of a classifier from its measured accuracy becomes 

easier as the accuracy of the ground truth increases. 
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(a) Mean 

 
(b) Standard deviation 

Fig. 10 Mean µ and standard deviation σ of αest as a function of ρ for different sample 
sizes N. 
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(a) Mean 

 
(b) Standard deviation 

 
Fig. 11 Mean µ and standard deviation σ of αest as a function of ρ for two classifiers 

(α = 0.8, β = 0.7). 
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(a) Mean 

 
(b) Standard deviation 

 
Fig. 12 Mean µ and standard deviation σ of αest as a function of ρ for different numbers 

of classes K. 
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Fig. 13 PA<B as a function of ρ of a pair of classifiers (α = 0.7, β  = 0.8) for different 
sample sizes. 

 

 
 

Fig. 14 PA<B as a function of ρ for two different pairs of classifiers (N=100 samples). 
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Fig. 15 PA<B as a function of ρ for different numbers of classes. 

 
 

 
Classifier A output 

 
Classifier B output 

 
Fig. 16 Outputs from two classifiers: A was produced by a maximum likelihood classifier 

and B from a spectral shape classifier. 
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Fig. 17 Reference classification image R derived from M7 imagery using interactive 
clustering and labelling. Classes defined in Table 1 were assigned to clusters using 5 m 

M7 data as image truth. 
 

 


