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An alternative to conventional techniques for compressing video data of moving objects
is described. The method, known as track-based compression (TBC), detects, associates,
and tracks moving objects between frames, sending only a small chip or ID around the
moving object once the track has been established. The compression ratio achievable
depends on scene content, sensor geometry, the degree to which the background can be
stabilized, and other factors. Preliminary results range from 1,500:1 for oblique sensing
geometries with significant parallax to more than 10,000:1 for near-nadir overhead and
fixed ground-based surveillance video.
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Introduction

Given a limited bandwidth channel, as the space-time bandwidth of a video sensor increases the
data stream must be compressed to a greater degree in order to prevent loss of information. For
example, a gigapixel video sensor operating at 10 Hz requires ~ 50,000:1 compression ratio to be
sent over a 10 Mb/sec downlink. The current state of the art in low-loss video compression
(H.264), which can compress HDTV 10801 video (~ 2 Mpix/frame) to a rate of 5.5Mp/sec (2 x 24
x 30/5.5 =261:1), is more than two orders of magnitude away, and is usually not realizable in real
time.

Track-based compression (TBC) offers an alternative to conventional techniques for sending
large volumes of video-derived information over limited bandwidth channels. Commercial video
codecs attempt to optimize performance globally, i.e., over the full frame. An alternative
approach is to concentrate only on the part of the video stream that is of interest to the user. TBC
achieves extremely high compression ratios (> 10,000:1) in two ways: First, it only sends
information over regions in the video frame that change. This in itself, depending on the density
of moving objects and other changes, can achieve compression ratios between 100:1 and 1,000:1.
Additional gain is achieved by associating and tracking changes between frames, sending only a
small chip or ID around the moving object once a track has been established.

The processing chain is summarized in Figure 1. Registration includes both frame to ground and
frame to frame (frame stabilization) processing. Moving object detection involves background
modeling, change detection, and feature extraction. Detected changes are associated and tracked
across frames. Track-based filtering eliminates many of the false alarms caused by glint, parallax,
and sensor artifacts. The output data stream consists of a file generated at the frame rate
containing the location and ID of all moving objects in track at that time. Chips are generated
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once a track has been confirmed and are sent lossless. After an initial training period, a
background image is computed, which can be downlinked at a lower bit rate.

Raw
Video In
B bits
N movers
Y
Registration Movmq Object Tracking
o Project to ground Detection N Change_
plane ™| « Background estimation issoﬁ!atl?fqt .
o ilizati » Change detection e Tracking/filtering
e shlite « Feature extraction » Chipping
A
. Compressed
Key Metrics: Video Out
Probability of detection, P, = N’/N B’ bits for
Compression ratio, R = B/(B'+B") N’ movers
B” bits for FAs

Figure 1 Track-based video compression processing

Registration Considerations

Achieving high compression ratios using TBC requires good tracking performance; i.e., long
tracks with few false alarms. Key change detection performance metrics include the probability of
detection (Pp) and false alarm rate (FAR). Our goal is to maximize the compression ratio while
maintaining a high probability of detection, Pp > 95%. Accurate registration and stabilization of
the background is key to reducing false alarms and achieving high compression ratios, and can be
particularly challenging in overhead images taken from a moving platform. For first-order
Markov textured surfaces, the processing gain (SNR) of change detection over single image
object detection (thresholding), is
y=2/1- E[a"]

where a is the Markov coefficient and d is the local displacement resulting from parallax, both
random variables. At a given Pp, the FAR depends on the processing gain. To achieve a 1000:1
compression ratio at the detection level (i.e., before track processing), the FAR must be less than
107, Assuming Gaussian statistics, an SNR of 13.5 db is required to achieve a 95% Pp at that
FAR. If we assume the target to clutter ratio is 3 db, the CD processing gain must be about 10 db.
Using an analytic model for predicting CD performance (Carlotto 2007), the standard deviation of
the displacement (misregistration) error must be less than about 0.65 pixels rms. The ability to
accurately register the background is thus a critical driving requirement, followed by the need to
effectively mitigate false alarms caused by 3-D parallax changes.



2-D Background Estimation and Change Detection

A 2-D background modeling approach is used for detecting changes across a registered sequence
of video frames. The simplest technique (temporal anomaly detection) models the background
brightness at each pixel location by its mean and variance. Moving objects are detected if the
brightness exceeds a constant false alarm rate (CFAR) threshold
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and « is the learning rate. A Gaussian mixture model (Stauffer and Grimson 2000) provides
better performance (at a higher computational complexity) when the background statistics change
in a simple fashion, e.g., due to a blinking light. However, mixture models are not much better
than simple anomaly detection in dealing with most kinds of moving clutter. Kernel density
models (Elgammal et al 2002) are somewhat better, provided background changes occur less
frequently than changes caused by moving objects.

Figure 2 Moving object detection. Ground-based thermal IR video (left) and aerial video
(right). (IR video courtesy NVL.)

Examples of moving object detection in two different types of imagery are shown in Figure 2. In
the thermal IR video (640 x 480) at 10 frame/sec about 0.3% of a frame changes on average.
Sending only chips and reports for moving objects at least 100 pixels in area (a person) results in
a compression ratio (CR) of 355:1. By sending only the report location and size, the CR increases
to more than 150,000:1. For a high definition (1280 x 720) aerial camera at a frame rate of 1
frame/sec, sending chips and reports for moving objects greater than 25 pixels in area results in a
CR of 1470:1. The CR for sending only the report location and size is 4,400:1. Sending reports
and chips, the CR is higher for the aerial video because the changes (chips) are smaller; sending
only reports, the CR for the ground video is higher because there are fewer moving objects.



Following change detection, 2-D feature extraction estimates the physical length, width, and pose
of the object, as well as other features which can be used as features for tracking and to determine
the class of the object by its size (e.g., dismount, car, truck, etc.).
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Figure 3 Track-based filtering characteristics of aerial video

Track-Based Filtering

In addition to standard kinematic trackers, we have developed a pixel-level tracker that can
maintain track on thousands of objects in wide field of view (WFoV) video. Our approach is to
track all changes, filtering out those that do not meet certain criteria such as persistence
(minimum number of reports), displacement (distance and direction), and consistency (size and
brightness). Pixel-level associations instantiate track hypotheses in an M x L element track table
where M is the maximum number of active tracks that can be maintained at a time. Tracks that
pass filtering are output after a delay of L frames.

Figure 3 illustrates the benefit of track filtering. (The vertical axis represents the number of
connected components, active or confirmed tracks, or false alarms that have been filtered,
depending on the color of the curve.) Over the period of the video, two abrupt shifts in camera
position introduce a large number of false changes (two spikes in the figure). Some of the
detected object regions (connected components) can be filtered based on their size and shape.
Most do not persist long enough to become confirmed tracks. Those that do persist but do not
displace by an expected amount are further filtered. Even though the number of detections varies
over a 10:1 range, the number of confirmed tracks remains relatively constant.



Table 1 Sample track-based compression performance results

Data set CR PD* Description

UGS 13,000:1 |1 Fixed platform. Tracks people moving in/out of

(thermal IR) scene with moving background clutter (trees and
shadows).

Traffic videos|12,000:1 [0.95 Fixed platform. Tracks cars, trucks, and
pedestrians.

Low altitude [1470:1 0.75 Moving platform. Oblique video (elevation angle ~

aerial 30°) with severe parallax. PD reduced due to

surveillance obscuration. Uncorrected parallax errors increases
FAR and reduces R.

WFoV 9130:1 0.95 Moving platform. Tracks large well-spaced targets

including trucks, airplanes, and ships.

*For objects within a given size range.

compression ratio ~12,000:1

Two frames from TBC IR UGS video containing persons walking and moving
background clutter. Pd = 1, compression ratio ~13,000:1

Figure 4 Track-based compression (TBC) exhibits. (Videos courtesy U. Karlsruhe and NVL.)




Track-based Compression Performance

Table 1 lists TBC performance for several different scenarios. These numbers include sending the
reports and chips. Even greater compression ratios (> 100,000:1) are possible by sending only the
track reports, e.g., inserting icons onto maps that have already been stored at the client side.
Figure 4 shows a basic TBC reconstruction where the chip is inserted into the background image
at the centroid of the target track. More sophisticated renderings are also possible.

The compression ratio is affected by the FAR and Pp. Reduced Pp causes track fragmentation,
which increases the number of tracks, and thus the number of chips that must be sent. Best
performance is achieved in overhead imagery near nadir, and in ground surveillance with minimal
obscuration and low background motion clutter.

Summary

A preliminary version of a track-based compression algorithm has been implemented and tested
on several different kinds of video data with promising results. In addition to compression, TBC
also serves as a data conditioner for downstream processing of video information. Chip data can
be fed downstream to automatic target recognition algorithms that provide IDs on targets in track.
This information, together with the track reports can then be fused with other intelligence data to
develop a comprehensive picture of the battlespace. Other uses of the compressed video stream
are also possible.
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