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Abstract

A method is described for predicting the long-term movement of people on the ground, either on foot or
driving vehicles, as a function of the terrain, weather, behavior, and situation (context). It uses the results of
statistical simulations to estimate location probability distributions of where a vehicle or person may go in a
given amount of time. Several applications are discussed including detecting possible gaps in sensor
coverage, route planning, and mobile communications routing.
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1. Introduction

Predicting the movement of ground vehicles (and people) is important in a variety of applications including
target tracking, sensor management, resource allocation, collision/obstacle avoidance, route planning,
search and rescue, and others. Some involve projecting movement over relatively short time intervals (less
than a few minutes), while others involve predictions out tens of minutes or more. Kinematic (target
dynamic) models can be used for short-term prediction (less than a few minutes) but are not effective in
predicting ground movement over longer time horizons (tens of minutes to an hour into the future). Over
the long term, ground movement is constrained fundamentally by mobility. Road class, terrain type, slope,
weather, and other physical factors limit maximum speed, which determines the area that can be reached in
a given period of time. What a person or vehicle is doing (behavior) defines where in the reachable area
one would expect to find it. For example, is a vehicle moving to/away from known sites, following familiar
routes, attempting to avoid detection, etc. These factors can be used to prioritize the reachable area by
means of spatial probabilities conditioned on a set of assumed behaviors.

Section 2 reviews previous work related to ground movement prediction, and discusses the analytic utility
of long-term prediction in a closed loop intelligence surveillence and reconnaissance (ISR) control process.
Section 3 describes a method for predicting long-term movement that uses the results of statistical
simulations to estimate location probability distributions of where a vehicle or person may go in a given
amount of time. Several applications are briefly discussed in Section 4 including detecting potential gaps in
sensor coverage, route planning, and mobile communications routing.

2. Previous Work

Long-term prediction is an important part of Intelligence Preparation of the Battlefield (IPB), and was
initially developed within that community. Motivated by the limited accuracy and speed of manual terrain
analysis (Appendix A), automated tactical decision support systems combining terrain, weather, threat, and
military organization/tactical data were first developed in the mid 1980s'. The Army’s All-Source Analysis
System (ASAS)® followed in the 1990s. The first movement prediction capability was the Tactical
Movement Analysis (TMA) component in ASAS. TMA used a version of Dijkstra's algorithm® to combine
terrain data (elevation and features), weather, ground forces locations, and movement characteristics into
two cost surfaces — one representing movement times and the other movement directions. Subsequent
processing of the cost surfaces produced isochronal (fixed time) contours and shortest paths.
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A different approach to movement prediction was developed over roughly the same period, and is the basis
of the Movement Projection (MP) component in the Joint Tactical Analysis Toolkit (JTAT)*. This approach
used a Markov-Bayes predictor to project current enemy locations into the future based on behavior and
terrain factors. Target state (location and activity) at a future time x(¢+ NAr) are determined recursively
from the current state x(¢). Operational factors (terrain limitations, move-stop-move behavior, etc.) are
represented statistically as transition probabilities, p[x(f + Af) |x(¢)] that vary in space as a function of the
terrain, and over time as target behavior changes. The projected location of a target is described by a
location probability distribution (LPD). Peaks in the LPD indicate likely locations of the target. As the
prediction time out increases, the uncertainty in spatial location increases as the initial state estimate
diffuses in space (Fig. 1). Predictions out to time 7 = NAt require N iterations of the algorithm, each of
which involves convolving a transition probability kernel with the LPD.
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Fig. 1 Evolution of LPD as a function of time in Markov-Bayes predictor

A software system known as Predict was developed for analyzing long-term ground vehicle movement in
support of dynamic sensor management and other ISR planning activities in DARPA’s Dynamic Tactical
Targeting (DTT) system’. The system predicts future locations of vehicles moving through road networks.
A vehicle’s motion is modeled statistically by the mean (u) and standard deviation (o) of its speed as a
function of vehicle type and road category. The F* algorithm® computes two minimum travel time arrays to
all locations in the network from the current location: one assuming the vehicle is moving at a minumum
speed (u-No), the othe assuming the vehicle is moving at a maximum speed (u+No), where the number of
standard deviations N is a parameter. The area reachable in a given time is determined by thresholding
these arrays. Taking the exclusive-or of the two arrays results in a set of predicted intervals along the road
network that can be reached in a given amount of time’.
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Fig. 2 ISR target tracking control loop

Going beyond static IPB analysis Predict operates within a closed-loop control system (Fig. 2). Various
delays or latencies exist in closed-loop ISR systems, such as the time to position/reposition sensors, to
collect and process data, etc. The role of Predict is to project the location of targets far enough into the
future in order to compensate for these delays. If T is the system latency, and Av is the uncertainty in the
speed of a vehicle being tracked, the accuracy of a prediction Ax=AvT depends on the latency. In
Appendix B it is shown that kinematic prediction techniques, which take advantage of short-term
correlations in vehicle motion, cannot accurately predict out beyond a couple of minutes. In order to



maintain long-term tracks on targets, knowledge of future target locations tens of minutes into the future is
needed to determine if the current collection plan is sufficient to provide the data required to maintain track
on a target. Predicted target locations that are not adequately covered by the current collection plan must be
determined so that the collection plan can be modified accordingly. Two important track metrics are track
length, and the probability of correct identification (Pip). Loss of track reduces track length and Pjp. Results
over three different areas demonstrated greater than a 30% increase in average track length, and a 20-50%
increase in P;p when long-term (terrain-based) prediction was used together with short-term (kinematic)
prediction.

Where the computational complexity of a Markov-Bayes predictor is grows with the length of the time
horizon (N =T / At), that of the F* is constant over time. Although the F* algorithm can be several orders
of magnitude more compute-efficient than Markov-Bayes, what it lacks is the ability to estimate LPDs,
which provide a finer-grained estimate of where vehicles are likely to be located.
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(a) Land use/land cover (LOCs)
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(c) Digital elevation model (DEM) (d) Composite surface model

Fig. 3 Elements of a surface model

3. Statistical Network-Flow Prediction

By embedding the F* algorithm in a Monte Carlo simulation framework an alternative means of estimating
the LPD is possible. Instead of using minimum and maximum speeds, reachable areas based on statistical
samplings of vehicle speeds on and off-road as a function of slope, whether, and other operating conditions
are computed and averaged in space. As the number of realizations increases it is conjectured that the
estimate approaches the true LPD. This method, which we call statistical network-flow prediction, provides
the theoretical basis for computing LPDs.

Instead of operating over just road networks, statistical network-flow prediction can use elevation/slope and
land use/land cover with LOC data for on/off-road mobility, terrain suitability, and observability analyses.



Terrain and feature data are used to build a 2.5-D surface model over the area of interest. A surface model
(Fig. 3d) is created by combining land cover (a) and LOC data (b) with a digital elevation model (c). The
F* algorithm computes the minimum travel time map from a given starting point to all points on the surface
in parallel. The speed across a node depends on the nature of the surface (i.e., land use/land cover, slope,
etc.). It also varies within a surface type, based on micro-terrain, driving behavior (e.g., start-stop), and
other random factors, which are not directly observable. These random factors can be described statistically
by motion models that give the distribution of speeds of a vehicle are conditioned on the surface type (Fig.
4). Uncertainty in speed results in uncertainty in predicted location, which is represented by the 2-D LPD.
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LPDs are estimated using a Monte Carlo simulation that
randomly samples from the object’s location and speed
probability distributions and averages. Fig. 5 illustrates a
simulation over the above area. The process can be
summarized as follows:

1) For each cell, generate a random speed from the
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0.20 vehicle speed distribution corresponding to the
road/terrain class/slope of the cell
0.00 2) Compute the local (random) travel time (cell
’ ’ s oo 0 size/speed) for each cell from the random velocity
Speed (m/sec) (a)
Fig. 4 Vehicle motion model on roads. 3) Determine the total travel time from the starting
Different distributions describe speed point to all cells using the F* algorithm (b)
off road. 4) Mark cells that can be reached in time t < T by

thresholding the travel time array (c). This is one
realization of the underlying random process.
5) Repeat the above steps 1) to 4) N times. Each repesents how far the vehicle can travel at a
randomly generated speed.
6) Count the frequency of occurrence of reachable cells and normalize (d).
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(c) Reachable area (t < 15 min.) (d) Estimated LPD @ T=15 min. for 10 Monte Carlo runs

Fig. 5 Monte Carlo simulation example



Fig. 6 shows the resultant LPD. The highest probability locations are along roads. Off-road locations have
probabilities 50-80% below that of road locations; travel is prohibited in river and high slope areas.
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(a) Isometric plot of the LPD

(b) False color display of LPD where highest probabilities
(in red) are along roads

Fig. 6 Views of estimated LPD

4. Applications

LPDs can be combined with other kinds of information in simulation framework® to generate various
prediction products. Sensor models describe the flight path, field of view, and other parameters for
estimating the probability of observing a projected vehicle at a particular location by a sensor over a given
time horizon. Observability is used to estimate track/fusion performance, and to detect possible gaps in
projected sensor coverage. Fig. 7a shows the observability map for a sensor 10° above the horizon at an
azimuth 170-190°. Areas of low observability are in valleys shadowed by higher terrain to the south.
Observability maps combined with LPDs indicate possible sensor coverage gaps (Fig. 7b). Regions in red
are those likely to be reached by the vehicle in T=15 minutes that will not be observable.
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Fig. 7 Coverage gap product to support sensor management

Multiple object predictions can be used to solve route planning and resource allocation problems. LPDs of
multiple objects (Fig. 8) can be computed for all objects at once (a), which gives the LPD of encountering
the nearest object, or by summing individual LPDs and renormalizing (b), which gives the LPD of
encountering any object.
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Fig. 8 Location prediction of multiple objects
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(b) Blue force route planning based on projected red force
movements

Fig. 9 Location prediction for route planning

Route planning (Fig. 9) involves predicting the movement of opposing forces and solving an optimization
problem; e.g., finding the route having the smallest probability of encountering the opposition. Resource
allocation problems include selecting sensors that optimize target tracking/fusion performance based on
predicted target motion, determining optimal routing strategies for mobile communications that take into
account the movement of communication nodes’ (Fig. 10), search and rescue'”, and others.

1o

(a) Blue and red force communications nodes are moving
in the battlespace. Want to communicate between blue
nodes (underlined). Use prediction to estimate probability
of blue objects surviving over time interval T in order to

determine communications routing.

(b) If, c(i,j) is the cost to communicate between two nodes
(function of survivability and other factors), use linear
programming to solve the minimum cost path (routing
between two nodes).

Fig. 10 Location prediction for mobile communications routing



Movement prediction is also important in source/sink analysis; e.g., in defining movement corridors,
inferring possible of choke points, etc. Movement corridors can be determined by adding total travel times
from source and destination, and thresholding to find those locations reachable over a given time horizon
(Fig. 11). The size of the movement corridor depends on the terrain, mobility of the object, and available
time. Places where the area collapses to a line are possible choke points (a). By varying the time horizon,
alternative routes appear (b).

(a) Areas reachable in T=50 minutes (b) Areas reachable in T=60 minutes
Fig. 11 Location prediction for source/sink analysis

Another use of sensor models and observability analysis is in predicting the movement of evasive targets;
i.e., a target that is using move-stop-move, obscuration, and terrain masking to avoid detection (Fig. 12a).
The observability map (b) gives the probability of a red force target being observed by a blue force sensor.
Movement corridor (¢) and minimum travel time path (d) are computed after eliminating observable terrain.
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(a) Assume target of interest moves between two p (b) Depiction of the probability of detection as a function
of observability from a GMTI sensor to the south. Dark
regions are low Pd areas.
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(c) Envelop of‘r?né;/ement for target moving between two  (d) Minimum travel time route between two points is
points over a specified time interval that uses terrain to contained within the envelop of possible routes permitted
evade detection by sensor to the south within a given time.

Fig. 12 Location prediction of evasive targets



5. Discussion

Recently, heuristically-motivated algorithms based on genetic programming and ant-based computation'’
have been proposed for predicting vehicle movements based on observed patterns of movement. Statistical
network-flow prediction uses physical models of vehicle motion and minimum travel time algorithms to
determine reachable areas and then applies contextual models to prioritize these areas. This two-step
process insures that predictions are traceable back to physical models and contextual assumptions. Ways of
combining both approaches is an area of future work.

(a) Compass distance (b) Distance along road

(c) Reachable area along network is less than AWAC (d) Difference between AWAC and network analysis

Fig. A-1 Fractal analysis of the performance of an analyst with a compass

Appendix A - Analyst with a Compass (AWAC)

One way to motivate the need for an automated long-term prediction capability is to assess the accuracy of
a terrain analyst in estimating the area reachable by a vehicle moving at a given speed. In certain situations
(e.g. vehicle movement limited to straight roads on flat terrain) one would expect an analyst with a compass
(AWAC) to be able to accurately predict this area. However roads are often not straight and so AWAC will
tend to over-estimate a vehicle’s reachable area. For a mix of road types and conditions, and when
movement off road is allowed, it becomes increasing difficult to obtain accurate estimates in this way. In
fact AWAC will tend to over-estimate the reachable area. Using a fractal model it can be shown that the
amount by which AWAC over-estimates the area is related to the fractal dimension of the terrain.



Assuming a prediction time out 7, and a vehicle speed v, AWAC draws a circle of radius L =vT (Fig. A-
la). A travel time algorithm computes the minimum travel time route out to the circle. The actual distance
along the road network is longer because the network is rougher (Fig. A-1b). According to a fractal model,
the length of a road depends on the scale of measurement; in particular, length vs. scale follows a power
law:

poj-loglzlogl -y, (A-1)
logL-1logl

where L is the length of the road using a ruler of length L, and [ is the (integer) length of the road using a
ruler of length /. Rearranging,

logi=(D—l)(logL—logl)+logL (A-2)
or

oL kPt (A-3)

S | ep=2] )

From Fig. A-1b, we estimate the fractal dimension of the road
D =log i/logL =1log(160)/log(112) =1.07. (A-4)

Constrained by the terrain (in this case, restricted to the road network), the vehicle does not reach the circle
(Fig. A-1c). The area bounded by the inner circle (Fig. A-1d) is the reachable area by way of the road
network; the area bounded by the outer circle is the area reachable by the vehicle if it is not constrained by
the LOC network (which is the simplified model using by AWAC). The over-estimated area (doughnut) is
about 47% of total area. A fractal model predicts this fraction to be

Q-1 -(L/Z)2 =1-(L/1°) = 1= =1-(112)7 = 051, (A-5)

which is in close agreement with the estimate.

Appendix B - Closed-Loop Control and Prediction

A closed-loop (kinematic) controller attempts to drive the sensed location (i.e., the center of the sensor
footprint) y(¢f) to coincide with the target location x(7). Let us assume a target moves at a constant
velocity over the prediction interval, T so the vehicle’s location at time #+7 is

X, () = x(t) +v(OT (B-1)

The difference between the current target location and the current sensed location is used to update the
velocity

vi)=v(iE-D)+Av=v(-1)+y

y(t);x(t)] (B-2)

where the current sensed location is the predicted target location delayed by T,



y(O)=x,t-T). (B-3)
Combining these equations

x(0)-y@®)

v(t)=v(t—1)+}/[ T

] yO)=x,¢-T)=x@-T)+v(-T)T (B-4)

results in a delay-differential equation for the velocity

v _
dt

x(t)-x(@t-T) _
T

v(t —T)] (B-3)

Taking the Laplace transform of both sides:

X(@s)(1-e™
T

- V(s)e‘“] V(s) = X(s) rd- er)

T(s+ye™) (B-6)

sV(s)= V[

When there is no delay (7 =0), the pole is in the left-half plane, and the system is stable. For 7' > 0, we
must solve a complex transcendental equation to determine pole location(s) in order to assess system
stability

s=—ye™" (B-7)

The closed-loop system can exhibit a variety of behaviors depending on parameter values'?; e.g., it is stable
when 0 <y =1/eT ; Oscillatory behavior occurs when y > 1/eT > 0, and can become unstable if gain is too
high, or is negative. The stability of the control loop depends on 7', and on the gain y, which affects the
transient response. When 7 is small, a kinematic predictor can take advantage of short-term correlations in
vehicle movement to achieve relatively accurate results. We use the concept of ‘dead reckoning’ as a
baseline for comparison, where the current speed of the vehicle is used to predict how far away it will be in
the future, viz.

x(t+T)=xt)+v()T . (B-8)
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Fig. B-1 Speed of a simulated BTR-80 over a 1 hour period

Fig. B-1 plots the speed of a simulated BTR-80 over a period of about an hour. Table 1 lists the RMS error
between the current target location and the current sensed location for dead reckoning vs. kinematic
prediction. In general, as the time out increases the effectiveness of kinematic prediction decreases. For this
particular target, dead reckoning is more accurate for predictions made more than 2 minutes into the future.



Table B-1 Performance comparison of kinematic (closed-loop) prediction vs. dead reckoning

Time Out, T Dead Reckoning Kinematic Prediction
RMS error (m) RMS error (m)
5sec 6 0.23
25 sec 30 5.8
1 minute 76 27
2 minutes 170 131
3 minutes 275 307
5 minutes 493 912
20 minutes 3921 15786
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