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Abstract 

 

A feature-based approach for detecting anomalies in spectral, spatial, temporal, and other domains is described. When 

the frequency of occurrence is small relative to the background, anomalies such as man-made objects in natural image 

backgrounds do not form their own clusters, but are instead assigned the nearest background cluster, becoming an outlier 

(statistical anomaly) in that cluster. Our method clusters data, which may be spectral, spatial, or temporal in nature, into 

one or more background types and computes the Mahalanobis distance between the data and assigned model 

(background cluster). The detection of a variety of objects and phenomena in panchromatic and multispectral imagery, 

and video are illustrated. 
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1. INTRODUCTION 

Anomaly detection is often the first processing step in automated imagery exploitation systems. Stein et al [1] describe a 

family of anomaly detectors based on the generalized likelihood ratio test. One of these, the Reed Xiaoli (RX) algorithm 

[2], detects objects of known shape/shape that are spectrally different from the immediate background. Autoregressive 

[3] and fractal models [4] have been also proposed for detecting manmade objects in textured backgrounds. Many of 

these algorithms use some form of sliding window to find objects of a given size.  

 

The cluster-based anomaly detector (CBAD) is a pure spectral detector that involves clustering and analyzing the 

distribution of pixel values in background clusters [5]. CBAD assumes the image background can be partitioned into a 

set of clusters, where the pixel values in a cluster are modeled by a multivariate Gaussian distribution. When the 

frequency of manmade object pixel values is small compared to background pixel values, manmade objects do not form 

their own, distinct clusters. Instead they are each assigned the nearest background cluster, becoming an outlier (anomaly) 

in that cluster (i.e., their value lies farther from the mean than background pixel values in the cluster). In this paper we 

generalize the CBAD approach for detecting anomalies in space, time, as well as spectrum. 

2. FEATURE-BASED ANOMALY DETECTION 

Let 

! 

z ={z
n
}  be a vector of measurements (features). In spectral anomaly detection, 

! 

z
n
 is the n-th spectral measurement 

(spectral band). To detect anomalies in a time-series, 

! 

z  could be a vector of frequency measurements. In a single band 

(panchromatic) image, 

! 

z  can be a vector of local (texture) measurements. One could also envision 

! 

z  to be a vector of 

size/shape features derived from the connected components of an image. 

 

2.1 Spectral Anomaly Detection 

Assume the normal background in any of these problem domains is multimodal, and can be characterized by a set of 

! 

K  

means 

! 

m
k
 and covariances 

! 

C
k
, where   

! 

k =1,2,LK  enumerates the clusters. If the relative frequency of anomalies is 

small compared to the natural background, they do not form their own, distinct clusters. Instead clustering assigns 
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anomalies to the nearest background cluster, becoming an outlier in that cluster, i.e., their value lies farther from the 

mean than background pixel values in the cluster. The Mahalanobis distance measures how similar a measurement is 

from its associated cluster 
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and provides a convenient test statistic for anomaly detection [2].  Fig. 1 gives an example of spectral anomaly detection 

from [5]. The image (a) shows a truck in a mixed background containing trees, sparse vegetation, and water. In cluster 

image (b) each background type has been assigned a unique cluster (color). Notice that object pixels do not form their 

own cluster but are instead assigned the nearest background cluster. The Mahalanobis distance image (c) shows pixels on 

the truck, which do not fit their assigned background model. 

 

(a) Image (b) Clusters (c) Mahalanobis distance 

Fig. 1 Cluster-based spectral anomaly detection  

2.2 Temporal Anomaly Detection 

Now we apply this approach to temporal anomaly detection. Let 
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x(m"t) = x
m

 be a discrete time series, and 
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z
n
 its 

discrete Fourier transform (DFT) 
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where 

! 

N  is the length of the sequence. If 

! 

m = E[z
i j
] is the average DFT over an ensemble (image) of signals, and 
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measures the distance of a signal’s spectrum at 

! 

(i, j)  from the average. 

 

Fig. 2 illustrates the use of a temporal anomaly detector to enhance tracks of moving objects in noisy imagery. Fig. 2a is 

from a video clip taken by astronauts aboard the Space Shuttle Discovery in 1991 showing a number of moving objects 

in space near the spacecraft. Although frame averaging (b) reveals the tracks of the objects, they are hard to separate 

from the background, particularly where they cross the limb of the Earth. Computing the maximum value across frames 



(c) works well when the objects have a positive contrast relative to the background but would not work in general. Fig. 

2d is the output of the temporal anomaly detector, which clearly shows the tracks. 

 

 (a) Video frame (b) Average over frames 

(c) Maximum across frames (d) Temporal anomaly detector 

Fig. 2 Temporal anomaly detection in video data (Image courtesy NASA) 

3. SPATIAL ANOMALY DETECTION 

A set of filters applied to an image produces a set of filtered images 
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Instead of computing the DFT over a time series, let 
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X
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}  be the 2-D DFT of

! 

x
ij
. For convenience we define a 

set of filters in the frequency domain by wedge/ring regions. The output from the n-th filter is 
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where 

! 

r  is the radial frequency, and 

! 

"  is its direction. Each filter is defined by two intervals – one in angle and the other 

in frequency. For example, 

! 

I" = [0,2#]  and 

! 

I
r

= [r
n
,r
n+1
], n = 0,1,... define a set of concentric ring filters which provide 

a local estimate of the power spectral density (PSD) of the texture; 

! 

I" = ["
n
,"

n+1
], n = 0,1,... and 

! 

I
r

= [1,N /2] are a set 

of directional (wedge) filters, which measure its anisotropy. 

 



With a slight change in notion, letting 
  

! 

z
ij

= [z
ij
(0), z

ij
(1),Lz

ij
(N "1)] , the Mahalanobis distance (3) now measures the 

similarity of the image in the vicinity of 

! 

(i, j)  to the overall average. This provides a means for detecting anomalies in 

space as deviations from the average background texture. As in CBAD more than one cluster can be defined to adapt to 

multiple backgrounds. 

 

a) Scanned aerial photo of Chotuna, an eroded adobe 

pyramid in Lambayeque Valley, Peru [6]. 

b) Surviving edge structure has a unique directionally-

anisotropic PSD relative to the background 

Fig. 3 Linear feature detection in unstructured background (Image courtesy Marillyn Bridges/Aperture Foundation) 

 

a) Aerial image of a linear feature (a stone wall) in a 

deciduous forest in winter. Tree shadows produce a 

structured clutter background that is non-fractal. 

b) Stone wall has a unique directionally-anisotropic PSD 

relative to the background 

Fig. 4 Linear feature detection in structured background (Aerial image courtesy USGS) 



Fig. 3 shows the detection of an extended linear feature within an eroded archaeological site in South America. Here we 

use a set of wedge (directional) filters to detect areas that are different from the background texture. One might ask how 

is the result in Fig. 5b any different from simply running a linear feature detector? Fig. 4 is an image of a stone wall that 

runs through a forested area. With the leaves off in winter, the sun creates tree shadows that produce a highly directional 

background texture. The stone wall is detected because its directional components are different from those of the 

background. 

 

 

a) Image containing four military vehicles b) Fractal model fit image 

c) Vehicles have a radial  PSD that differs from the 

background 

d) Vehicles also have a directional PSD that differs from 

the background 

Fig. 5 Manmade object detection in cluttered background 

 



4. COMPARISON WITH FRACTAL OBJECT DETECTION 

Fractal object detection assumes natural image backgrounds are fractal, and manmade objects can be detected as non-

fractal deviations [4]. Unfortunately the fractal assumption is rarely true, with backgrounds often having mult-fractal or 

even non-fractal structure. The result of this can be seen in Fig. 5b where the non-fractal character of shadow edges 

makes it difficult to differentiate between vehicles and bushes.  

 

Our anomaly detector is fundamentally different from the fractal approach. Instead of making explicit assumptions about 

the background, we measure the local PSD and detect areas that differ from the average. As seen in Fig. 5, the vehicles 

have a relatively unique radial PSD (c) and directional PSD (d) compared to that of bushes and shadows. Our method is 

thus effective both in images whose backgrounds are approximately fractal (Fig. 3) as well as those that are not (such as 

the directionally-textured background in Fig. 4). 

 

 

a) Space shuttle color photography b) Spatial anomaly detection (wedge filters) 

c) Spectral anomaly detection applied to color bands d) Combined use of spectral and spatial information 

separates wake from cluttered background 

Fig. 6 Example of spatial-spectral anomaly detection (Space Shuttle color photography courtesy NASA) 



5. COMBINED (SPECTRAL-SPATIAL) ANOMALY DETECTION 

It is also possible to detect anomalies in multiple modalities. Fig. 6 is an example of ship-wake detection using spatial 

and spectral information. The image, which was taken over the Bahamas is highly cluttered by underwater (bathymetric) 

structure, clouds, eddies, and other features. Individual anomaly detectors contain a significant number of false alarms. 

The spatial detector responds to the shape of the wake and to lineaments and striated structures in the image. The spectral 

anomaly detector false alarms on certain clouds. Combining the two using ‘and’-fusion effectively separates the wake 

from the background. 

6. SUMMARY 

A new feature-based anomaly detection technique was described and examples from several domains presented. It 

assumes the frequency of anomalies is small relative to the background, which can be represented by a mixture of 

Gaussian components. The method is an extension of the cluster-based anomaly detector (CBAD), which was originally 

developed for spectral anomaly detection. 
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