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Enhancement of Low-Contrast Curvilinear
Features in Imagery

Mark J. Carlotto

Abstract—A new method is described for enhancing low-con-
trast curvilinear features in imagery that combines directional fil-
tering with Fischler, Tenenbaum and Wolf’s algorithm for com-
puting minimum cost paths. The method exploits a phenomenon
called “the stability of lines over angle.” The idea is that when a di-
rectionally filtered image contains a line plus noise, minimum cost
paths tend to be aligned in the direction of the line with random
jumps between parallel paths. When the input image contains noise
only, the direction of minimum cost paths resemble random walks
with drift. As the direction of the filter changes, minimum cost
paths that follow true features persist and are more stable over
angle than those that follow noise. Adding them up in an accumu-
lator array over angle produces a larger number of votes along
signal paths than along noise paths. This provides a means for en-
hancing trajectories of low-contrast features. Several examples il-
lustrate the enhancement of forest trails in USGS aerial imagery,
linear features on Mars, and roads in synthetic aperture radar im-
agery.

Index Terms—Image enhancement, algorithm, low-contrast
curvilinear feature extraction, track-before-detect.

I. INTRODUCTION

THE ability to enhance, track, and detect low-contrast curvi-
linear features is important in a variety of image anal-

ysis applications. One is in finding fine-scale cartographic and
micro-terrain features such as trails and small streams in aerial
imagery. These features are often not contained in cartographic
databases and yet can be important in route planning, terrain
analysis, and cross-country mobility assessment. Another is the
detection of lineaments (e.g., fault lines, aligned volcanoes, and
other surface features) in terrestrial and planetary satellite im-
agery. Lineaments are often very subtle, and sometimes overlaid
by more recent surface processes making their detection and lo-
calization difficult. A third example is the extraction of roads
and other similar features in synthetic aperture radar (SAR) im-
agery. The coherent nature of SAR creates speckle noise which
limits the usefulness of conventional edge and line detectors.

Directional (matched) filters, Hough, and Radon transforms
can be used to detect straight lines and other features of known
shape. Jao et al. [7] describe a coherent spatial filtering approach
for SAR. Copeland [1] developed a localized Radon transform
for detecting short linear features such as ship wakes in SAR im-
agery. Curvilinear features present a greater challenge. If their
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shape is not known in advance, it is not possible to construct a
matched filter.

Tracking techniques provide an alternative approach.
McKeown and Denlinger [5] survey techniques for tracking
high-contrast roads in images. Edge linkers segment the image
into edges (or lines) and connect the segments together using
a model of the feature. Region-based followers operate on a
similar principle. Given a starting point and direction, a corre-
lation tracker moves out by matching a surface model of the
feature (e.g., the cross-sectional intensity profile) to the image
perpendicular to the direction of advance, using a path model
to control the search process.

Techniques where tracking follows detection do not work
well in low-contrast situations where the feature of interest is
at, or below, the noise level. Instead a track-before-detect ap-
proach can be used which accumulates evidence along alterna-
tive track (feature) hypotheses before making a detection de-
cision. Track-before-detect techniques have been developed for
moving target indication (MTI) detection in video data [8]–[10].
Samadani and Vesecky [6] describe a single image SAR curvi-
linear feature detection technique based on a track-before-detect
approach, which uses maximum a posteriori estimation together
with statistical models for speckle noise and the curve genera-
tion process to find the most probable estimate of the feature
given the image data.

Motivated by the track-before-detect approach, a new tech-
nique for enhancing low-contrast curvilinear features in images
is proposed that combines directional filtering with Fischler,
Tenenbaum, and Wolf’s algorithm [3] for computing min-
imum cost paths. The is a track-before-detect algorithm that
was originally developed for detecting high-contrast roads in
low-resolution imagery. Roads are extracted interactively by
following a minimum cost path back from a user-specified end
point to either a starting point or edge. Instead of using the
algorithm interactively for detection, a different application is
described here in which it is used, in effect, as a filter to en-
hance low-contrast features. The goal is to do this automatically
without knowledge of a feature’s shape, direction, or endpoints.

The plan of the paper is as follows. Section II reviews the
algorithm and shows how its performance varies with the

input signal to noise ratio (SNR). It describes how low-con-
trast features can be detected by using a directional filter be-
fore the algorithm to increase the SNR. When the endpoints
are not specified, the can be used in a different way to en-
hance low-contrast features by computing minimum cost paths
between all edge/point combinations on opposite sides of an
image and adding up the resultant paths in an accumulator array.
If the direction of the feature is unknown a directional filter bank
(DFB) can be used before the algorithm as described in Sec-
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tion III to increase SNR. One way to enhance low-contrast fea-
tures is to place the DFB before the so that
all paths are computed from the same directionally filtered set
of costs. Another way applies the algorithm to separate di-
rectionally filtered images. This new algorithm known as track
enhancement using the stability of lines over angle (TESLA)
is described in Section IV. Using simulated data, it is shown
that TESLA outperforms in enhancing low contrast
curvilinear features. Additional examples are presented in Sec-
tion V illustrating the extraction of forest trails in USGS aerial
imagery, linear features on Mars, and roads in SAR imagery.
Extending the technique to multiband data is discussed in Sec-
tion VI. An Appendix contains a performance model for the
algorithm, which gives the expected number of errors along a
track as a function of the SNR.

II. ALGORITHM

Let be the nodes of a network. Define
as the cost to go from node to node . Ford [11] developed the
following iterative algorithm for finding the minimum cost path
through a network.

1) Initialize the values of the nodes as follows:

where is the starting node.

2) For each connected pair of nodes, if , we re-
place the value of the first node: ; otherwise,
it is left alone. This is repeated for all pairs of connected
nodes until no value changes. At that point, the value at a
node is the minimum path cost to get to that node from the
starting node.

3) The minimum cost path from the starting node to any node
in the network is obtained by moving from that node back-
wards to the starting node in the direction of decreasing
path cost.

The algorithm [3], a variant of Rosenfeld and Pfaltz’s
distance transform [4], is a 2-D implementation of Ford’s al-
gorithm. It was originally developed for tracking high contrast
features such as roads in optical imagery, and has subsequently
been augmented to include line contrast and curvature [13], and
extended to 3-D data [12].

The first step in the algorithm computes the minimum cost
to get to all pixels from a set of starting pixels. A series of alter-
nating top-to-bottom/bottom-to-top passes over two arrays,
and are performed, where and are the row and column
indices, respectively. The first array, which stores the path cost,
is set to zero at the starting location of the feature, and to a large
value everywhere else. The second array stores the costs, which
are derived from the input image. In the top-to-bottom pass, each
row is first processed left to right by

(1)

Fig. 1. F algorithm processing sequence.

and then right to left by

(2)

In the bottom-to-top pass, each row is processed right to left by

(3)

and then left to right by

(4)

iterations are repeated until no value changes.
Consider the following cost array:

Fig. 1 illustrates the operation of the algorithm on this array,
represented as a network. The array of path costs is initialized
(a), and processed by the top-to-bottom, left-to-right (b) and
right-to-left (d) operators to produce the path cost array (c).
The shaded squares are those cells (pixels) within the window
that contribute to the update. This is then processed by the
bottom-to-top, right-to-left (f) and left-to-right (h) operators
to produce the path cost array (e). One more application of
operators (b) and (d) produce the final array of path costs (g).
The algorithm stops after the next iteration in which none of
the values changes. The minimum cost path from the starting
node to the edge nodes is indicated in Fig. 1(g).

Next, consider the effect of noise on the algorithm. Fig. 2
shows four realizations of a constant amplitude horizontal line
in additive white Gaussian noise (AWGN) at SNRs of 3, 0, 3,
and 10 dB (a)–(d). The images have been contrast-stretched for
display purposes. The algorithm was applied to each image,
assuming the left starting point of the line and right destination
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Fig. 2. F algorithm results at four different SNRs (point-to-point).

TABLE I
COMPARISON OF PREDICTED AND ACTUAL F ALGORITHM PERFORMANCE

edge are known. The path computed by the algorithm is a
series of points where are
the row and column indices of the th point. The computed path
can also be represented as an image

otherwise
(5)

The path images computed by the algorithm are shown in
Fig. 2(e)–(h). We can estimate the probability of making an error
along the path as a function of SNR (Appendix A). At a level of
confidence of

(6)

where the correct path is pixels long. Predicted and
actual values show good agreement (Table I).

In an automated system, the endpoints are not available. If
we know the line of interest runs in a particular direction, one
strategy for finding it is as follows.

1) Mark one set of points (e.g., an edge of the image) as pos-
sible end points (set costs to zero).

2) Compute the path costs to this set of points, and then find
the minimum cost path from each point in the other set of
(starting) points (e.g., along the opposite edge of the image)
to the nearest end point. Let be the minimum cost
path image computed from a start point to a set of
end points . The accumulated result over all start points
is . Repeat in opposite direction. In general,
paths computed in one direction differ from those com-
puted in the other direction, especially near the edges. They
differ because the algorithm itself is not symmetrical, com-

Fig. 3. Edge-to-edge F algorithm results.

Fig. 4. Receiver operating characteristic (ROC) for F algorithm.

puting paths from each point along one edge to the nearest
point on the other edge, and vice versa.

3) In order to capture all paths, we sum the minimum cost
path images in both directions between a pair of edges

.
If and are the left and right edges of an image, then the
sum represents possible horizontal paths; if they are the top and
bottom edges, then the sum represents vertical paths; other edge
pairs (e.g., top and right) give diagonal paths.

Fig. 3 shows what happens when the exact starting point is
unknown. The path of interest runs between the left and right
edges. If the edges are pixels in length, paths are gener-
ated which, when added together, produce an accumulated path
image containing a range of possible values between 0 and .
The value at a point in the accumulated path image is the number
of paths that go through that point. Locations with large values
are likely to lie along the feature we seek. Using the accumu-
lated path image as a detection statistic, the receiver operating
character (ROC) curve in Fig. 4 plots the probability of detec-
tion (Pd) versus the probability of false alarm (Pf) against truth
as a function of the detection threshold . Pixels
above threshold along the true line count as detections; others
are false alarms.

Also plotted in Fig. 4 are the values for the al-
gorithm assuming the starting point is known (Fig. 2), where

, , and is the number
of pixels in the image. These values occur at the “knee” of the
ROC curves, where the slope changes from to

, generally regarded as the operating point that
gives the best performance.

III. DIRECTIONAL FILTERING

Originally, small isotropic (nondirectional) filters were used
for tracking high contrast features using the algorithm [3].
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Fig. 5. Directional filtering improves performance of F algorithm.

Fig. 6. Directional filtering before the F algorithm (L = 10 pixels, 45 �

� � 135 ).

Given the relationship between SNR and accuracy, increasing
SNR prior to applying the algorithm should improve perfor-
mance. In AWGN, summing along the signal increases the SNR
by the length of the filter . The ROC curves in Fig. 5 show that
after filtering the 0-dB data Fig. 2(b) with an pixel filter
in the direction of the line, the performance of the algorithm
on that data is close to that of the 10-dB data Fig. 2(h).

If the direction of the feature is unknown and/or if it exhibits
significant curvature, filtering must be performed over a range
of possible directions. Let

(7)

be the output of the th filter

(8)

which sums along lines at an angle , where is the Dirac delta
function. To compute the maximum response over a range of
angles one can take the maximum value across the filters pixel
by pixel over those angles

(9)

Fig. 6 shows the results of preprocessing an image (a) through
a directional filter bank (b) prior to processing (c). As in the
example in Fig. 2, we assume the image contains a line orig-
inating from a known starting point along the left edge run-
ning in any direction between 45 and 135 to the right edge
(angles are measured relative to north). A bank of 18 filters

Fig. 7. Comparison of DFB and DFB + F results.

, pixels were used. The performance using
a directional filter bank (DFB) before the algorithm (known
as the ) is comparable to that obtained using a single
direction filter.

When the endpoints are not known we must use the edge-to-
edge version of the algorithm. In addition, if the direction
of the line is unknown, one must search over all angles. One
strategy is to filter over all directions, and compute possible
paths between all 6 pairs of edges. Fig. 7(a)–(c) are the DFB
outputs for the 3-, 0-, and 3-dB data. A bank of 36 filters

, pixels long were used from 0 to 180 .
Fig. 7(d)–(f) are the corresponding accumulated path images

. In addition to finding the path of the true line, the
algorithm also finds spurious paths through noise. The number
of these paths increases as the SNR decreases.

IV. TRACK ENHANCEMENT USING THE STABILITY

OF LINES OVER ANGLE (TESLA)

Instead of combining directional filter outputs into a single
image before processing, an alternative method (TESLA)
involves applying the algorithm to each directionally filtered
image and combining outputs in an accumulator array. The
method exploits a phenomenon which we call “the stability of
lines over angle.” The idea is this: When the input image con-
tains a line plus AWGN, minimum cost paths tend to be aligned
in the direction of the line with random jumps between parallel
paths. When the input image contains noise only, the direction of
minimum cost paths resemble random walks with drift. As the
direction of the filter changes, minimum cost paths that follow
true features persist and are more stable over angle than those
that follow noise. Adding them up in an accumulator array over
angle produces a larger number of votes along signal paths than
along noise paths. This phenomenon provides a means for en-
hancing trajectories of low-contrast features. Fig. 8(a) shows
paths for a 90 (horizontal) line in AWGN using filters from 0
to 90 at 10 increments. Note how the paths converge as the
angle of the filter approaches that of the line. Noise, on the other
hand, is less stable over angle Fig. 8(b).

The TESLA algorithm (Fig. 9) combines multiple out-
puts, each computed at a given direction. For each direction, the
input image is rotated so that the filter direction is horizontal.
If the background is correlated, spatial whitening is performed
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Fig. 8. F paths for different directional filters.

Fig. 9. TESLA processing flow.

Fig. 10. TESLA summed path images at different input SNRs.

before the directional filter is applied. For positive-contrast fea-
tures, the filtered image is contrast-reversed so that bright fea-
tures have low cost. If the image is highly cluttered (i.e., con-
tains other competing features), histogram equalization is per-
formed. The edge-to-edge version of the algorithm is applied
to this rotated, filtered, and equalized image. The resultant ac-
cumulated path image is rotated back in the opposite direction
and summed with other accumulated path images from other di-
rections.

Fig. 10 shows the TESLA accumulated path images for the
same 3-, 0-, and 3-dB data. Again, pixel filters spaced

apart from 0 to 180 were used. ROC curves (Fig. 11)
compare and TESLA enhancement performance.
The performance of the drops off significantly below

Fig. 11. Comparison between DFB, DFB + F , and TESLA algorithms.

Fig. 12. Simulated S-curve.

0 dB (a), while that of the TESLA algorithm degrades more
gracefully (b).

The strategy of using directional filters to increase SNR be-
fore using the algorithm breaks down to some degree with
curved features. In places of high curvature, directional filtering
provides little if any enhancement along the curve. Fig. 12 is an
S-curve (a) in AWGN (b). The SNR is 0.4 dB. A comparison
of DFB (c) (d) and TESLA (e) results for and

shows DFB provides little enhancement of the curve,
misses the two bends, while TESLA responds to the

entire curve. A comparison of ROC curves (f) shows TESLA has
significantly better performance than . For a constant
false alarm rate (CFAR) detector operating at , the
TESLA Pd is 25% higher than . Fig. 13 provides an-
other example for a curve with a loop. In this case, TESLA’s Pd
is 53% higher. TESLA, thus, appears to better enhance low-con-
trast curvilinear features than DFB or .

V. IMAGE EXAMPLES

In most practical image exploitation situations, we often do
not know the signal amplitude, other than that it is larger or
smaller than the background (i.e., positive or negative contrast).
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Fig. 13. Simulated curve with loop.

For a positive contrast signal, large values of can be assigned
low costs; e.g.,

(10)

For example, the values map the input range
to the range of costs For negative contrast signals

(29) can be flipped; i.e.,

(11)

We have also found that, in practice, using histogram-equalized
costs produces much better results for closely spaced features,
and for highly cluttered backgrounds, as originally suggested by
Fischler et al. [3].

Several examples are now presented to illustrate the use of
the TESLA algorithm on collected imagery. The first involves
finding trails in aerial imagery over a hilly and wooded area
on Cape Ann, north of Boston, in Gloucester, MA (Fig. 14). A
known trail (dotted line) runs from east of Goose Cove Reser-
voir, northeast up past a large rock formation known as Whale’s
Jaw, and north up to the town of Rockport (a). Portions of the
trail are visible in an aerial image (b). The true location of the
trail was measured using a GPS receiver (c). The output from
the TESLA algorithm (d) finds the entire trail plus a few spu-
rious paths of lower value. The following algorithm parameters
(Fig. 9) were used: whitening on, contrast positive, his-
togram equalization on, filter length , and search direc-
tion 0 –180 in 5 increments.

The second example takes us from Gloucester to Mars.
Fig. 15(a) is a portion of a Mars Global Surveyor (MGS)
image in eastern Arabia Terra near 16.5 N latitude, 311.4
W longitude.1 The image shows a variety of natural features
including small craters, buttes and mesas left by erosion of

1http://www.msss.com/mars_images/moc/7_30_98_devil_rel/index.html

Fig. 14. Enhancing trails in USGS image.

Fig. 15. Enhancing tracks of dust devils on Mars.

the surrounding terrain, small dunes and drifts, and a mantle of
dust that varies in thickness. In the image two dark lines ex-
tending several kilometers/miles across the image are indicated
that are thought to be tracks left by dust devils traveling over
the Martian surface. Fig. 15(b) is the output of the TESLA algo-
rithm showing the tracks of two dust devils as well as a number
of weaker paths through clutter (crater rims, ridges, etc.). The
following parameters were used: whitening on, contrast
negative, histogram equalization on, filter length 10, and
search direction 80 –100 in 5 increments.

Returning to earth, we conclude with an example illustrating
the enhancement of small roads and trails in SAR imagery
[Fig. 16(a)]. The image is a desert scene in the western US.
Roads are relatively smooth and so have a low backscatter
relative to desert scrub (bright areas). Changes in background
brightness are caused by variations in the local incidence angle
(topography). The TESLA output [Fig. 16(b)] captures most of
the roads in the image (whitening off, contrast negative,
histogram equalization on, filter length , and search
direction 0 –180 in 5 increments).
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Fig. 16. Extracting roads from SAR imagery.

The run-time of the algorithm is linear in the
number of pixels times the number of directions,

for a C implementation
on a 933-MHz Mac PowerPC G4 processor. For the example in
Fig. 14, the run-time was about 2 min.

VI. SUMMARY

Methods that combine directional filtering with Fischler,
Tenenbaum and Wolf’s algorithm for computing minimum
cost paths were explored as a means for enhancing low-contrast
curvilinear features in images. A simple method of combining
the two uses a directional filter bank before the algorithm

. A new algorithm (TESLA) applies the algo-
rithm to individual cost images from each directional filter, and
adds the resultant minimum cost paths in an accumulator array.
On simulated images of curved features in AWGN, TESLA
shows 25%–50% increase in the probability of detection at a
constant false alarm rate over . Several
imagery examples involving the extraction of forest trails in
USGS aerial imagery, linear features on Mars, and roads in
SAR imagery show promising results.

For constant amplitude features in AWGN, the cost at a pixel
in the image is the normalized distance between the pixel value
and the feature amplitude. The cost of a track of length has
a distribution with degrees of freedom. A means for es-
timating the number of errors along a track as a function of the
input SNR was derived and shown to agree with experiment.

Extending and TESLA to multiband data is straightfor-
ward. Assuming a known signal spectrum , the cost at a pixel

(12)

where is the pixel value at location along the track, and
the spectral covariance of the noise. For spectral bands, the
total cost along a path of length has a distribution with

degrees of freedom.

APPENDIX

PERFORMANCE MODEL

Assume a constant amplitude signal in additive white
Gaussian noise

signal
noise

(A1)

where the are Gaussian with zero-mean and variance .
The Viterbi algorithm [2] finds the shortest path through a graph
(trellis) representing all possible state transitions. For (A1), the
“length” of a state transition is

(A2)

The first term is the same for all transitions and can be ignored.
The second term is the normalized (Mahalanobis) distance. We
define the cost of a transition to be proportional to this second
term

(A3)

The expected value of the cost of a pixel along a path is

signal
noise. (A4)

The total cost along a track of length is

(A5)

which has a has a chi-square density, , with de-
grees of freedom. The expected value of the total cost of a track
without errors is , which is the minimum cost. Errors along
the path add to the total cost. To compute the number of errors
along the path at a level of significance, , we determine the
value of such that

(A6)

where

(A7)

is the cost of a path containing errors. Solving for gives

(A8)

where is the input signal-to-noise ratio.
This model can be used to estimate the number of errors along

a directionally filtered path. Let be the angle between a linear
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Fig. 17. (a) Directional filter and gain versus angle for (b) L = 5 and (c) L =

20.

Fig. 18. (Solid) Predicted and (dotted) measured errors as a function of angle.

feature, and a directional filter of length . The SNR at the output
of the filter as a function of angle is (Fig. 17)

(A9)

Inserting this into (A8) provides an estimate of the number of
errors as a function of angle

(A10)

This is an approximation since the output from the DFB is not
white but correlated in the filter direction. Fig. 18 plots the
predicted and actual error probabilities (number of errors di-
vided by ) versus angle for the 0- and 3-dB data
(Fig. 2) in 10 increments. As the angle, increases the model
(A10) over-estimates the number of errors. Generally, though,
the number of errors decreases with angle, implying that more
votes will tend to be accumulated at locations along the line.
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