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A Cluster-Based Approach for Detecting Man-Made
Objects and Changes in Imagery

Mark J. Carlotto, Senior Member, IEEE

Abstract—A new unified approach to object and change detec-
tion is presented that involves clustering and analyzing the dis-
tribution of pixel values within clusters over one or more images.
Cluster-based anomaly detection (CBAD) can detect man-made
objects that are: 1) present in a single multiband image; 2) appear
or disappear between two images acquired at different times;
or 3) manifest themselves as spectral differences between two
sets of bands acquired at the same time. Based on a Gaussian
mixture model, CBAD offers an alternative to compute-intensive,
sliding-window algorithms like Reed and Yu’s RX-algorithm for
single-image object detection. It assumes that background pixel
values within clusters can be modeled as Gaussian distributions
about mean values that vary cluster-to-cluster and that anomalies
(man-made objects) have values that deviate significantly from the
distribution of the cluster. This model is valid in situations where
the frequency of occurrence of man-made objects is low compared
to the background so that they do not form distinct clusters, but
are instead split up among multiple background clusters. CBAD
estimates background statistics over clusters, not sliding windows,
and so can detect objects of any size or shape. This provides the
flexibility of filtering detections at the object level. Examples show
the ability to detect small compact objects such as vehicles as well
as large, spatially extended features (e.g., built-up and bomb-dam-
aged areas). Unlike previous approaches to change detection,
which compare pixels, vectors, features, or objects, cluster-based
change detection involves no direct comparison of images. In fact,
it is identical to the object detection algorithm, different only
in the way it is applied. Preliminary results show cluster-based
change detection is less sensitive to image misregistration errors
than global change detection. The same cluster-based algorithm
can also be used for cross-spectral anomaly detection. An example
showing the detection of thermal anomalies in Landsat Thematic
Mapper imagery is provided.

Index Terms—Change detection, Gaussian processes, image
analysis, image representations, image sequence analysis, object
detection, pattern clustering methods, vector quantization.

1. INTRODUCTION

HE DETECTION of man-made objects and changes is im-

portant across a broad range of mapping and reconnais-
sance applications. Although a variety of change detection al-
gorithms exist, most cannot effectively discriminate between
man-made and natural change. This is a problem in that changes
in the natural clutter (e.g., differences in vegetation state, soil
moisture, water quality, etc.) often exceed man-made changes
in magnitude and number. This results in a large number of false
alarms that reduce system performance. Performance is further
reduced by false alarms induced by differences in lighting and
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imaging geometry between images. In single-image object de-
tection, man-made objects are usually modeled as compact re-
gions (e.g., vehicles, buildings, etc.) that are spectrally (or tex-
turally) different from the background. When the characteris-
tics of clutter are similar to the objects of interest, or when the
objects of interest are not compact but spatially extended (e.g.,
built up areas), the false-alarm rate will be high, resulting in poor
performance.

The goal of the present work is to develop techniques for de-
tecting man-made objects and changes while maintaining a low
false-alarm (FA) rate in the presence of significant natural back-
ground clutter. Historically, a considerable amount of cross fer-
tilization has occurred between object and change detection re-
search. Hunt and Cannon [15] first showed that images could be
modeled as Gaussian-distributed intensity fluctuations around
a nonstationary ensemble mean. Motivated by this observation,
Chen and Reed [11] and Reed and Yu [23] developed object
detection techniques based on a local Gaussian model (RX-al-
gorithm). Margalit et al. [36] applied the model to change de-
tection; Hoff ef al. [14] and Yu et al. [33] further extended it to
cross-spectral anomaly detection.

Therrien et al. [29] proposed an object detection approach
based on linear filtering similar to Chen and Reed’s. Tom de-
veloped a linear prediction algorithm for change detection [16]
based on Therrien’s image filtering approach. The linear predic-
tion algorithm can also be applied globally to compute the linear
transformation that best predicts (in the minimum mean square
error sense) a new image from a reference image. This is the
basis of the hyperspectral change detection technique described
by Stein et al. [27]. Instead of using a linear estimator, Carlotto
[3], [5], [6] computes a nonlinear minimum mean square error
estimate of the background from multiple reference images for
change detection.

Early change detection techniques were based on statistical
features such as cross correlation and entropy [17]. Mandelbrot
[19] showed that fractals are good models for a variety of nat-
ural phenomena that are self-similar in structure over scale or
resolution. That man-made objects tend to have structure that
varies over scale led Stein [28] to develop an object detection
technique that fits a fractal model to the image within a sliding
window, and detects pixels within the window whose features
deviate from a fractal model. Carlotto and Stein [8] used differ-
ences between fractal features to detect man-made changes.

A variety of change vector techniques have been developed
for multispectral change detection. Byrne et al. [1] perform a
principal components analysis of Landsat data and show that
gross differences in overall radiation and atmospheric changes
appear in the major component images and changes in land
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cover appear in the minor component images. Others compare
physically significant band combinations such as tasseled-cap
features [9], or change vectors [35].

Most change detection techniques require the images to be
physically registered. Symbolic techniques [22] detect changes
by segmenting and comparing regions in terms of their size,
shape, spectral properties, and spatial relations. Object-level
change detection [12], [30] is an outgrowth of the symbolic
approach.

From this brief overview, change detection seems inexorably
tied to the comparison of images, e.g., of pixels, vectors, fea-
tures, or objects extracted from two or more images. Differences
in sensor geometry, environmental conditions, and other factors
have limited the application of change detection techniques to
images taken under relatively similar conditions. Methods have
been developed to estimate and account for global atmospheric
and illumination differences [13], [27]. However, it is more dif-
ficult to model and correct for local (but correlated) changes in
the background (e.g., changing patterns of shading, shadows,
layover, vegetative state, etc.), which are often a major source
of false alarms.

A new unified approach for detecting man-made objects and
changes is described that involves clustering and analyzing the
distribution of pixel values in background clusters over one or
more multispectral image. Known as the cluster-based anomaly
detector (CBAD), this approach assumes the image background
can be partitioned into a set of clusters, where the pixel values
in a cluster are modeled by a multivariate Gaussian distribu-
tion. In single-image object detection, when the frequency of
man-made object pixel values is small compared to background
pixel values, man-made objects do not form their own, distinct
clusters. Instead they are each assigned the nearest background
cluster, becoming an outlier (anomaly) in that cluster (i.e., their
value lies farther from the mean than background pixel values
in the cluster). For change detection, a reference image (against
which change is measured) is divided into clusters. Each cluster
represents a homogenous population of pixels in the reference
image. Over the set of pixel locations in a reference image
cluster, a different set of pixel values are observed in a second
test image. If there is no change over this cluster, pixel values
in the test image will be clustered around the mean. In clusters
affected by change (i.e., clusters that contain changed pixels),
new pixel values will be introduced, which will tend to lie
farther from the mean than background pixel values in those
clusters.

CBAD detects man-made objects and changes by finding spa-
tially connected groupings of outlier pixels in clusters. Based
on a Gaussian mixture model [27], CBAD can be used to detect
man-made objects that are as follows:

* present in a single multiband image;
* appear or disappear between two images acquired at dif-
ferent times;
* manifest themselves as differences between two sets of
spectral bands acquired at the same time.
The organization of the paper is as follows. Section II de-
scribes the CBAD algorithm. In the same way RX is predi-
cated on Hunt and Cannon’s observation that an image can be

modeled as Gaussian fluctuations around a local mean, it is
shown that an image can also be described as Gaussian fluc-
tuations around a mean that varies cluster to cluster. Although
CBAD does not require any particular clustering algorithm, a
vector quantization (VQ) approach was used for its computa-
tional efficiency. Unlike RX whose window size is related to
the size of the objects one wishes to detect, CBAD makes no
assumptions about an object’s size or shape. Examples are pre-
sented illustrating the detection of small compact vehicles as
well as large spatially extended features. Section III describes
the application of CBAD approach to change detection. Unlike
previous methods for change detection that involve a compar-
ison of pixels, vectors, features, or objects, the cluster-based
method involves no direct comparison between images. Prelim-
inary results show it is less sensitive to image registration er-
rors than pixel-based global change detection. Section IV shows
how CBAD can be used to detect man-made objects that mani-
fest themselves in a wavelength-dependent manner between two
sets of bands. Section V addresses similarities between CBAD
and other methods, discusses its shortfalls, and outlines future
work. The Appendix illustrates how size, shape, and other fil-
tering techniques can be used to reduce false alarms at the ob-
ject level for both object and change detection.

II. CLUSTER-BASED ANOMALY DETECTION

Hunt and Cannon [15] proposed that images could be mod-
eled as Gaussian-distributed intensity fluctuations around a
nonstationary ensemble mean. They demonstrated this behavior
in optical imagery by blurring the image, which provides a local
estimate of the mean, and subtracting the blurred (local mean)
image from the original image. The statistics of the resulting
difference image closely approximate white Gaussian noise.
Reed and Yu [23] applied this model for detecting objects of
known shape, but unknown spectral characteristics. Following
their definitions, the shape of the object (template) is specified
by an N pixel (Iexicographically ordered) vector s; X is an M
band by N pixel matrix of measurements over the region under
test. They derive the generalized-likelihood ratio test (GLRT),
also known as the RX-algorithm for detecting instances of
objects of known shape whose spectral characteristics differ
from those of the background:

(XST)T(XXT)_l(XST) > rp, then object
ssT < 7o, then background.

r(X) =

Stein et al. [27] show that for a single-pixel object, denoted
by the M band vector x, as the window size N — oo, the test
statistic is

r(x) = (x —m)TC7}(x — m) 2)
where m and C are the M band sample mean vector and M x M
band covariance matrix computed over the sliding window. For
the hypothesis under test (the null hypothesis), the test statistic
has a Chi-square distribution with M degrees of freedom, and

so has a constant false-alarm rate (CFAR) independent of the
background clutter statistics [11]
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Fig. 1.
image containing a man-made object (a). Cluster image (b). Assignment of
grayscales to clusters is arbitrary. Note that object pixels do not form their own
cluster but are assigned multiple background clusters. Mahalanobis distance
image (c) shows pixels that do not fit their assigned background cluster model.

Cluster-based anomaly detection example. Portion of multispectral

A. Gaussian Mixture Model

Instead of a local Gaussian model, CBAD uses a Gaussian
mixture model [27]. Image statistics are computed over clus-
ters as opposed to a sliding window. CBAD assumes that back-
ground pixel values within clusters can be modeled as Gaussian
distributions about mean values that vary cluster-to-cluster, and
that anomalies (man-made objects) have pixel values that de-
viate significantly from the distribution of the cluster. It is con-
jectured that this model is valid in situations where the fre-
quency of occurrence of man-made objects is low compared to
the background and so do not form distinct clusters. Instead,
man-made object pixels are split up among multiple background
clusters as shown in Fig. 1. CBAD exploits this effect by using
the Mahalanobis distance [31], which is the same as the test
statistic (2), as a means for identifying pixels that do fit well
in their assigned cluster.

Multiband data x(%, j) are decomposed into a set of Gaussian
clusters X, = {m,,,C, ,}

mo, = Y (i)

" (ij)eX,

1 .. . T

Cor=rrog 2 (i) —maJix(isf)—ma, " ©)
" iex,

where N,. is the number of pixels in cluster 7. The cluster map

[Fig. 1(b)] assigns an index to each pixel location based on its

cluster membership

r(i, j) = r|x(i, j) € X, “4)

The Mahalanobis distance of a pixel relative to its cluster
[Fig. 1(c)] is

dz,r(ivj) = [X(Z7j) - mx,?” (T(Z7j))]T
xCoy (r(i,) [x(i, §) = M (r(3,5))] (5

where m,, .(7(¢, j)) and C, (7(¢, 7)) denote the mean and co-
variance for the cluster at location (3, j).

The Mahalanobis distance (5) is the same test statistic as the
RX-algorithm for single pixels under test against the local back-
ground (2), and so has the same CFAR property independent of
the background clutter statistics. In CBAD, statistics are com-
puted over clusters that are spatially distributed over the image,

in contrast to the those computed within a sliding window in
RX. The size of the window in the RX-algorithm is related to
the size of the objects of interest. CBAD estimates background
statistics over clusters, not sliding windows, and so can detect
anomalies of any size (or shape) as shall be demonstrated below.
This provides the flexibility of filtering detections by size and
shape at the object-level. The Appendix discusses detection and
object-level (postdetection) processing in CBAD.

B. Clustering by Vector Quantization

CBAD is potentially more compute-efficient than the
RX-algorithm, since it operates over clusters. If L is the
number of pixels in an image, the complexity of RX is
O(NL), where N is the window size. CBAD’s complexity is
O(Ny1+N3+...Ng) = O(L) plus clustering. This factor of N
savings in computation can only be realized if an efficient clus-
tering algorithm is chosen. Iterative algorithms like K-means
[31], expectation-maximization [37], and others can require
as many as O(LR) operations per iteration, and require many
iterations to converge. Although the cluster-based approach is
not predicated on any particular clustering algorithm, a non-
iterative, vector quantization (VQ) technique, based on ideas
summarized in Pratt [21], was chosen for its computational
efficiency.

In one dimension, the VQ algorithm assigns image pixel
values one of R levels

T = Tp|, <z < Typgq- (6)

The levels {z1,x2, ...z} are chosen so as to minimize the
mean square quantization error

Ty

(z — z,)?p(x)dx @)

R—1

MSQE = Z

r=0 Z

where p(z) is the probability density of the image. For a uni-

form density, the levels are equally spaced between the min-

imum and maximum image values. In general, a companding

approach [21] can be used that histogram equalizes the image
to force it to have a uniform density

y = clz]. ®)

The cumulative distribution function (cdf) of the histogram-
equalized image is divided into R equally spaced probability
intervals

r
Yr = _(ymax - ymin) + Ymin- (9)

R
These intervals are mapped back via the inverse transform
¢~ to obtain the variably spaced quantization levels of the orig-
inal image
=yl (10)
Pratt [21] discusses several VQ strategies for multiband
data. If the data are Gaussian, one approach is to spectrally
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decorrelate (rotate) the data using a principal components (PC)
transformation

(1)
ex

where rows of the spectral whitening matrix are the eigenvectors
are the covariance matrix

C = E[xx"] - [E(x)E(x)"] (12)

and the eigenvectors {e,, } and eigenvalues { )\, } of the covari-
ance matrix satisfy

C=> legel. (13)

Each PC image can then be quantized individually and the
results combined. For Gaussian data, the total entropy

H= —/p(z)lnp(z)dz:Z—/p(zn)lnp(zn)dzn:ZHn

n=1
(14)
where p(zy,) is the density of the nth PC image. The entropy in
the nth PC image is [24]

H, = In(c,V2me) (15)

where 02 = \,.

Itis noted that (14) is only an approximation if the data are not
Gaussian. Provided the Gaussian assumption is valid, bits can
be allocated to PC images based on their relative information
content. If R is the desired number of clusters, B = log, R,
where B is an integer (i.e., R =1,2,4,8,...),and B < H,

BH,,
H

is the number of bits assigned to the nth PC image. A block
quantization scheme is used to allocate an integer number of
bits to each PC based on their information content. The resulting
cluster decision regions are the intersection of individual PC
decision intervals.

By = (16)

C. Cluster-Based Whitening

RX assumes that images can be modeled as Gaussian-dis-
tributed intensity fluctuations around a nonstationary local
mean. CBAD assumes that images can be modeled as Gaussian

128
Value

(b)

(a) Example image, (b) cdf, and quantization levels, and (c) cluster mean image.

distributions about a mean value that varies cluster to cluster.
To assess the empirical validity of the cluster-based model,
consider the image in Fig. 2(a) containing two vehicles in a
complex natural background. The cdf of the image is plotted
along with R = 8 (plus zero) quantization levels [Fig. 2(b)].
Fig. 2(c) is the quantized image where each pixel value in the
original image is replaced by the average of its respective upper
and lower quantization levels. This is an image of ensemble
means computed over clusters (quantization intervals) as op-
posed to local means computed in a sliding window.

It is now demonstrated that the statistics of the difference
between the cluster-based mean image and the original image
approximates white Gaussian noise. Fig. 3(a) is the upper left
corner of the image in Fig. 2(a) containing only background
clutter. Fig. 3(b) is its histogram; Fig. 3(c) is the autocorrela-
tion function. Fig. 3(d) is the upper left corner of the difference
between the image in Fig. 2(a) and the image of cluster means
in Fig. 2(c). Its histogram [Fig. 3(e)] is much more Gaussian
than that of the original image [Fig. 3(b)], and its autocorrela-
tion [Fig. 3(f)] closely resembles that of white noise.

Fig. 4(a) is the difference between the original image in
Fig. 2(a) and the image of ensemble means in Fig. 2(c). Log
plots of the cdf of difference images computed for R = 2, 8§,
and 64 levels are shown in Fig. 4(b). For R = 8 levels, essen-
tially Gaussian behavior is exhibited over a large portion of the
distribution. Too many (R = 64) or too few (R = 2) clusters
result in difference images that are not Gaussian, analogous
to those resulting from smoothing windows that are either too
small or too large [15].

The image of Mahalanobis distances [Fig. 4(c)] reveals those
pixels that do not cluster well. They can be visualized in the
isometric plot [Fig. 5(a)] which displays the Mahalanobis dis-
tance as a function of image value and cluster. Clusters at the
low and high ends contain the tails of the distribution [Fig. 5(b)].
Shadows and bright materials are farthest from the mean in these
clusters and so have the highest Mahalanobis distance.

D. Object Detection Examples

Fig. 6(a) shows a slightly larger portion of the image of the
two vehicles shown earlier in Fig. 2 (image size 400 x 400
pixels). Fig. 6(b) is the output from single-pixel RX-algorithm
(2) and Fig. 6(c) is the Mahalanobis distance (5). Even though
the vehicles are similar in tone to the background, both RX and
CBAD are to detect them from their cast shadows. Fig. 6(d) and
(e) plot the receiver operating characteristic (ROC) curves for
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Fig. 3. Subimage containing background (a) only, (b) histogram, and (c) autocorrelation plot. (d) Difference image, (e) histogram, and (f) autocorrelation plot.
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Fig. 4. (a) Difference image, (b) cdfs of difference images, and (c) Mahalanobis distance image. CDFs (of pixel counts) in (b) are plotted on a log scale. Linear
portions of plot are indicative of Gaussian behavior.
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Fig. 5. (a) Isometric plot and (b) histogram of image in Fig. 2(a).
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Fig. 6. Comparison of CBAD and RX performance for single-band image. (a) Image containing two vehicles. (b) RX output (N = 160 x 160). (c) CBAD
output (R = 32). (d) Pd versus Pfa (log scale) for RX. (e) Pd versus Pfa (log scale) for CBAD. (f) comparison of CBAD and RX performance.

RX and CBAD. The probability of detection (Pd) and proba-
bility of false alarm (Pfa) are based on the fractions of object and
background pixels detected relative to a truth mask as a function
of detection threshold. The single-pixel version of RX was ap-
plied using window sizes of 40 x 40, 80 x 80, and 160 x 160
pixels. CBAD was run at R = 2, 8 and 32 clusters (quantization
levels). A comparison of curves [Fig. 6(f)] indicates that CBAD
has better a Pd at low Pfa, and RX has a better Pd at high Pfa in
this particular example.

Figs. 7 and 8 present two multispectral object detection ex-
amples illustrating the use of CBAD in detecting large spatially
extended features and small compact objects. A portion of an
Ikonos image! over Dawrah, Iraq [Fig. 7(a)] shows a built up
area (top) and bomb-damage (bottom). The first three Ikonos
bands were divided into R = 16 clusters (B = 4 bits). Fig. 7(b)
is the cluster map, and Fig. 7(c) plots cluster versus Ikonos
band 1 and band 3 values. The rectangular decision regions
are result of block quantization. The global Gaussian assump-
tion (14) appears to be reasonably valid for the data in this ex-
ample. Fig. 7(d) plots the Mahalanobis distance versus Ikonos
bands 1 and 3. Pixels that lie in the tails of the global distribu-
tion have high Mahalanobis distance relative to their assigned
cluster [Fig. 7(e)]. Being large and spatially extended, these re-
gions would be difficult to detect using the RX-algorithm. The
result of size filtering after detection (CFAR = 0.1) for regions
larger than 500 pixels in area (arbitrary threshold) is shown in
Fig. 7(d). (The Appendix discusses detection, region labeling,
and filtering.)

The second example involves the detection of small compact
objects (ground vehicles) in multispectral imagery consisting

Ihttp://www.spaceimaging.com/gallery/default.htm.

of three visible and one near-infrared (NIR) band [Fig. 8(a)].
Fig. 8(b) is the cluster map, and Fig. 8(c) plots cluster versus
band 4 and band 3 values. The Gaussian assumption does not
appear as valid as in the previous example, yet the algorithm
still performs well. Fig. 8(d) plots the Mahalanobis distance
versus bands 4 and 3. The vehicles (and some trees), which
lie at the periphery of the global distribution [Fig. 8(d)], have
a high Mahalanobis distance with respect to their assigned clus-
ters [Fig. 8(e)]. Like ground vehicles, certain tree spectra have
a low frequency of occurrence in the limited area processed
and are a source of false alarms. Size filtering after detection
(CFAR = 0.01) eliminates trees leaving vehicle-sized detec-
tions [Fig. 8(f)].

III. CLUSTER-BASED CHANGE DETECTION

Consider two coregistered multiband images: a reference
image x(i, 7) and a test image y (%, j) acquired at a latter time
containing a man-made change. The test image contains two
components
where y; (7, j) is the background, and z(%, j) is change. If the
two images are acquired under identical conditions, y;(i,7) =
x(1, 7). Image subtraction yields

In practice, atmospheric and sensing conditions also change,
and so the appearance of the background is different in the two

images. The key challenge in detecting man-made change is the
elimination of nonsignificant changes in the background.
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Fig. 7. Extraction of large spatially extended features using CBAD.
(a) Ikonos bands 1-3 over Dawrah, Iraq. Band centers at 0.48, 0.55, and
0.66 pm. (b) False-color (in grayscale) rendition of cluster map (R = 16
clusters). (c) Cluster map displayed as a function of the band 1 (horizontal axis)
and band 3 (vertical axis) value. (d) Mahalanobis distance (brightness) plotted
as a function of the band 1 (horizontal axis) and band 3 (vertical axis) value.
(e) Mahalanobis distance image. Large values occur over built up area (top)
and bomb damage (below). (f) Detected regions greater than 500 pixels in area
ranked by their average Mahalanobis distance (Pfa = 0.1).

A change detection technique described by Stein er al. [27]
exploits the fact that under certain conditions spectral measure-
ments of the same material viewed at different times are linearly
related. This leads to the linear transform

where the parameters are determined by linear regression.
Often images have systematic background differences, e.g.,
poorly drained fields are wetter in one image, or bodies of water
have a higher turbidity, etc. These correlated differences in the
background are not considered significant, yet they are a major
source of false alarms.

Rather than use a single (global) function [Fig. 9(a)], one
could cluster the two images, match clusters in the reference
image to those in the test image, and use a different function for
the pixels in each cluster. For example, a linear transform could
be computed over each cluster

yo(i,3) = fr [x(i, ) = Ar(i, ) x(i, 5) + b [r(i, 5)] (20)

where the functions vary by cluster [Fig. 9(b)]. The would pro-
vide the change detector additional degrees of freedom to adapt
to background differences.

19)

(€)

Fig. 8. Extraction of compact objects using CBAD. (a) False-color (in
grayscale) multispectral image (bands 4, 3, and 2 in medium, light, and dark
areas, corresponding to red, green, and blue). (b) False-color (in grayscale)
rendition of cluster map (R = 4 clusters). (c) Cluster map displayed as
a function of the band 4 (horizontal axis) and band 3 (vertical axis) value.
(d) Mahalanobis distance (brightness) plotted as a function of the band 4
(horizontal axis) and band 3 (vertical axis) value. (e) Mahalanobis distances
image. Large values occur over vehicles and trees. (f) Detected regions within
the size range of vehicles ranked by their average Mahalanobis distance and
compactness. (Pfa = 0.01).

Instead of actually estimating these functions over each
cluster and performing change detection by subtraction (18),
an alternative method is proposed that is based on analyzing
the distribution of pixel values within clusters. In cluster-based
change detection (CBCD), the reference image is divided into
clusters as in CBAD. Each cluster represents a homogenous
population of pixels in the reference image. Over the set of
pixel locations in a reference image cluster, a different set of
pixel values are observed in the test image. If there are no
man-made changes affecting this cluster, the pixel values in the
test image will be related to those in the first. Instead of trying
to determine an explicit relation to account for any background
differences over the cluster, pixel statistics in the second image
are examined to determine whether or not man-made changes
have occurred. If there are correlated changes in the back-
ground over the cluster, the test image mean and covariance
may be different from the reference image, but the pixels in
the cluster will remain clustered around the mean. But if the
cluster is affected by man-made change, new (uncorrelated)
values will be introduced tending to produce clusters with a
mixed population of pixels, having a wider spread of values.
As in CBAD these man-made change pixels will have a higher
Mahalanobis distance relative to the background.
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Fig. 9.
different functions for each cluster.

(a) Global change detection uses a single function to relate reference and test image spaces. (b) Cluster-based change detection effectively assumes
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Ilustration of cluster-based change detection concept. (a) Reference image (blue band), (b) test image (blue band). (c) False-color (in grayscale) rendition

of reference image cluster map. (d) Blue band reference image histogram over no change cluster. (¢) Blue band test image histogram over no change cluster.
(f) Pixel locations of no-change cluster. (g) Blue band reference image histogram over cluster with a change. (h) Blue band test image histogram over cluster with
a change—note presence of second population. (i) Pixel locations of cluster containing change.

Assume the reference image has been divided into a set of
clusters { X,.} where each cluster is represented by a set of pa-
rameters (3). Let {Y. } be the set of cluster parameters computed
from the test image y (¢, j) over the spatial extent of the clusters
derived from x(4, j), i.e., Y, = {m, ,,C, .} where

1 ..
F Z Y(Zaj)
" Gi)EeX,

> Iy(ig)-my, ]y 5)-m,, ] . @D

(4,5)€Xr

my =

1
Cyr=

N, -1

The reference image statistics {X,.} model random back-
ground fluctuations within a cluster as a multivariate Gaussian
distribution. For each pixel in the reference image, its Maha-
lanobis distance is given by (5). Now, for each pixel in the test
image, its Mahalanobis distance image relative to {Y,.} is

dy.(i,5) = [y (i, §) — my, (r(i, §))]"
xCy L (r(i,4)) ly(i,4) — my . (r(i, 5))] -

Within-cluster differences in the test image are caused by
background fluctuations and changes in the test image. It is con-

(22)



382 IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 43, NO. 2, FEBRUARY 2005

d) e)

Fig. 11.

c)
1.00 T
CBAD (R=2)

CBAD (R=256) '
0.75 ~ P
Global CD o

Pd 0.50

0.25

0.00 T T T T
1E-05 1E-04 1E-03 1E-02 1E-01 1E+00

Pfa

)

Comparison of CBCD and global change detection algorithm results. (a) Reference image. (b) Test image. (c) Global change detection difference image.

d) CBCD Mahalanobis distance image (R = 2 clusters). (¢) CBCD Mahalanobis distance image (R = 256 clusters). (f) ROC curves plotting Pd versus Pfa in

(percent object and background pixels detected as a function of operating point).

jectured that changed pixels in a cluster will have a higher Ma-
halanobis distance than background (no change) pixels.

A. Change Detection Example

Fig. 10 illustrates the change detection concept. A pair of
Ikonos images (bands 1-3) were registered. Consider a region
containing vehicle changes on a road [Fig. 10(a) and (b)]. A
cluster map (R = 256 clusters) was computed using the VQ
algorithm over this region [Fig. 10(c)]. Let us examine two
clusters: one over a region of no change [Fig. 10(f)], the other
containing a vehicle change in the test image [Fig. 10(i)].
The VQ algorithm produces clusters in the reference image
whose distributions are approximately Gaussian [Fig. 10(d)].
Assuming a linear relationship between the test and references
image pixels within this cluster, the distribution of pixel values
in the test image [Fig. 10(e)] should also be approximately
Gaussian. Changes in the test image generally affect multiple
clusters, e.g., the appearance of a vehicle replaces background
pixel values in some clusters by those of the vehicle. The value
of changed pixel(s) will, in general, differ from those of the
background leading to a mixed population. This is seen in one
such cluster [Fig. 10(i)], where the reference image distribution
is approximately Gaussian [Fig. 10(g)], while the test image
distribution is mixed [Fig. 10(h)]. If the frequency of change
within a cluster is small, the change pixels do not significantly
affect the statistics of the cluster, which is dominated by the
background. However, change pixels, which deviate from the
background, produce larger Mahalanobis distances than do
background pixels.

B. Comparison of CBCD and Global Change Detection

Fig. 11 compares CBCD with a global change detection al-
gorithm for the two images in the previous example. The global
change detection algorithm uses the reference image to estimate
the background in the test image by assuming a linear relation
(19). Significant differences in atmospheric state, illumination,
sensor geometry, and ground cover result in large background
differences between the two images [Fig. 11(a) and (b)]. In this
example, two vehicles appear, and one vehicle disappears. The
appearance of the two vehicles is clearly evident in the Ma-
halanobis distance image [Fig. 11(d) and (e)]. By comparison
these changes are much less obvious in the global change detec-
tion result [Fig. 11(c)], in which background differences domi-
nate. (Objects that disappear are detected by running the change
detector in the reverse direction.) Fig. 11(f) plots ROC curves for
the three results [Fig. (11c)—(e)]. Ata given Pd, CBCD has about
an order of magnitude fewer false-alarm pixels than the global
change detection algorithm. Changing the number of clusters
does not greatly affect CBCD results, since the changes are
spectrally distinct from the background in this example.

C. Effect of Misregistration on Detection Performance

Misregistration is typically a significant factor limiting
change detection performance [10]. In order to assess its effect
on CBCD, the reference and test images were misregistered by
shifting one relative to the other. Fig. 12 plots the performance
of CBCD and global change detection for shifts of 0, 1, and 4
pixels in the horizontal direction. The performance of global
change detection decreases significantly as misregistration



CARLOTTO: CLUSTER-BASED APPROACH FOR DETECTING MAN-MADE OBJECTS AND CHANGES IN IMAGERY 383

1.00 1.00

no shift

no shift

————— +1 shift ------- +shift

0.751 0.75+

—-—-- +4shift = +4 shift

Pd 0.50 ¥ Pd 050

025-_ _ "

0.25+

1 Y
P a
el

0.00 T T T T 0.00 T T T T
1E-05 1E-04 1E-03 1E-02 1E-01 1E+00 1E-05 1E-04 1E-03 1E-02 1E-01 1E-00
Pfa Pfa

(a) (b)

1.00

1.00

no shift CBCD (R=2)

------- +1 shift 0.75+"""""" CBCD (R=256)

0.75+

+4 shift Global CD

Pd 0.50- Pd 0.504 _‘.“
o
0.25-—.—.& 0.25 - ,_-
i

e -

0.00 0.00 F——7—— T T
1E-05 1E-04 1E-03 1E-02 1E-01 1E+00 1E-05 1E-04 1E-03 1E-02 1E-01 1E-00
Pfa Pfa

(©) (d)

Fig. 12. Effect of misregistration on CBCD and global change detection
performance (Pd versus Pfa). (a) Global change detection performance
(Pd versus Pfa). (b) CBCD performance (R = 256 clusters). (c) CBCD
performance (R = 2 clusters). (d) Comparison of global change detection and
CBCD (+4 shift).

increases [Fig. 12(a)]. In comparison, CBCD performance
(R = 256 clusters) decreases only slightly [Fig. 12(b)]. For
R = 2 clusters, performance is relatively constant [Fig. 12(c)].
CBCD'’s stability in performance is attributed to the fact that the
background is estimated over a set of pixels that are distributed
over the entire image. Spatial structure in images causes neigh-
boring pixels to be statistically correlated. The correlation
distance depends on the scale of the structure. In parts of the
image containing larger structures, the distance will be greater
than in parts containing smaller structures. CBCD operates over
spatially distributed, nonconnected pixel sets and so can take
advantage of spatial correlations where and when they occur.
At Pd = 0.5 CBCD has almost two orders of magnitude fewer
FA pixels than global change detection [Fig. 12(d)].

D. Results for Larger Image Pair

Results for a larger portion of the previous image pair are now
presented. Fig. 13(a) and (b) shows a registered pair of Ikonos
images (bands 1-3) acquired before and after the start of the
Iraqi War. Global change detection and CBCD results are shown
in Fig. 13(c) and (d). The global change detection algorithm re-
sponds largely to background differences, including changes in
the appearance of roads due to shading and shadowing differ-
ences, and vegetation changes. CBCD, on the other hand, re-
sponds strongly to the bomb damage, and to a lesser extent, to
changes in the built-area near the top of the image. The latter
are false-alarms caused by changing patterns of building lay-
over and shadows between the two dates. Discussions of these
effects and methods to reduce their impact on change detection
performance are contained in Section V and the Appendix.

()

Fig. 13. Comparison of global change detection and CBCD results over a
larger image. (a) Reference (old) image. (b) Test (new) image. (c) Global change
detection difference image. (d) CBCD Mahalanobis distances image (R = 256
clusters).

IV. CROSS-SPECTRAL ANOMALY DETECTION

Instead of operating on two images over time, one set of
image bands can be used to estimate another set of bands (from
the same or a different coregistered sensor) imaged at the same
time. For example, a technique for removing space-varying,
wavelength-dependent haze (and smoke) in multispectral im-
agery uses reflective infrared (IR) bands, which are less affected
by haze, to estimate the visible bands [4]. The technique effec-
tively removes the space-varying haze in the visible bands [26].
Haze and smoke can be interpreted as spectral anomalies—fea-
tures in one set of bands that are not predictable from another
set of bands. Hoff ef al. [14] describe a generalized spectral
difference algorithm for detecting weak targets in multiband
imagery. It assumes that natural backgrounds behave as a gray
body (emitting more or less uniformly over wavelength), while
man-made objects emit radiation more strongly at particular
wavelengths. Stated another way, natural backgrounds tend
to be highly correlated while man-made objects exhibit less
correlation (are not predictable) band to band.

The cluster-based approach can be applied to cross-spectral
anomaly detection in the same way as change detection. Two
sets of bands are defined: reference bands in which the objects
of interest cannot be distinguished from the background, and
test bands which respond weakly to the objects of interest. The
reference bands are clustered (3), statistics of the test bands are
estimated over the spatial extent of the clusters derived from
the reference bands (21), and the Mahalanobis distance is com-
puted for each test pixel relative to its corresponding cluster
(22). Within-cluster differences in the test bands are caused by
background and object fluctuations. The cluster-based model as-
sumes spectrally anomalous object pixels will be farther from
the mean (have a higher Mahalanobis distance) than background
pixels in a cluster.

Fig. 14 illustrates cluster-based cross-spectral anomaly de-
tection on Landsat Thematic Mapper (TM) imagery. Landsat
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Tllustration of cluster-based cross-spectral anomaly detection concept. (a) One of several mixed urban clusters over band 4. (b) Band 4 histogram. (c) Same

mixed urban cluster over band 6. (d) Band 6 histogram. (e) One of several water clusters over band 4. (f) Band 4 histogram. (g) Same water cluster over band 6.
(h) Band 6 histogram showing evidence of second component due to warmer pixels from power plant.

TM contains three visible bands (bands 1, 2, and 3) and three
reflective IR bands (bands 4, 5, and 7) at 30 m/pixel, and one
thermal band (band 6) at 120 m/pixel. Landsat bands 1-5,
and 7 (reference bands) were clustered over a region north
of Boston. Band 6 (the test band) responds to the objects
of interest (thermally emissive features). Fig. 14(a) and (c)
highlights the pixel locations of a cluster (mixed urban) over
bands 4 and 6. Fig. 14(b) and (d) shows the histograms of
bands 4 and 6 over that cluster. This cluster does not contain
any thermally anomalous features, i.e., the thermal band is
correlated with the visible/relective IR bands. Fig. 14(e) and
(g) plots the pixel locations of a cluster (water) containing
a spectral anomaly (thermal discharge from a power plant)
over the same bands; Fig. 14(f) and (h) shows the histograms
over the cluster. The thermal discharge from the power plant
raises the temperature of the water which produces a mixed
population of cooler (background) and warmer (object) pixels
in the band 6 histogram [Fig. 14(h)].

Fig. 15 plots bands 4 and 6 values, and the Mahalanobis
distance along a transect over water through the power plant’s
thermal plume. While the IR reflectivity (band 4) over water
remains relatively constant, the thermal emissivity (band 6)
increases slightly in the plume. The mixed population of band
6 values over clusters containing the plume (one of which is
shown in Fig. 14) produces large within-cluster differences
(large values of the Mahalanobis distance). Stated another
way, the thermal discharge is not detectable in the visible and
reflective IR bands, and so cannot be predicted from these
bands. This leads to large prediction errors in the weighted
spectral difference algorithm [14, eq. (13)].

A. Thermal Anomaly Detection Example

Fig. 16(a) is a false-color image of Landsat TM bands 4, 3,
and 2 (same area as shown in Fig. 14). The thermal band image
is shown in Fig. 16(b). Two features of interest are identified

150
M
100 Background Power Plant
Value
50 Scaled MD
Band 4
0 -—%h———.,"\{ r
0 5 10 15 20 25
Position

Fig. 15. Data along transect through power plant’s thermal plume. Bands 4
and 6 are raw (uncalibrated) pixel values. Mahalanobis distance increases as
one moves through the plume.

with arrows: a shopping center (upper left), and a coal-burning
power plant (lower right). Neither feature stands out from the
background in the visible and NIR (reference) bands. In the test
band (thermal band), the shopping center is warmer than the
surrounding area, but the power plant’s thermal discharge into
the cold water is not noticeably warmer than nearby regions
[Fig. 16(b)]. Mahalanobis distance images were computed for
different numbers of clusters. Fig. 16(c) is the result for R =
256 clusters, which clearly reveals the power plant, shopping
center, and several other smaller thermal anomalies. Fig. 16(d)
plots ROC curves for the thermal (band 6) image, and for CBAD
with R = 32 and 256 clusters. As in previous examples the
Pd and Pfa are based on the fractions of object and background
pixels detected relative to a truth mask as a function of detec-
tion threshold. For R = 256 clusters, at Pd = 0.5, CBAD has
roughly two orders of magnitude fewer false-alarm pixels than
simple thresholding of band 6.
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Fig. 16. Thermal anomaly detection example. The object of interest is the
Salem Harbor power plant near the lower right corner of the image. (a) Landsat
TM bands 4-3-2. (b) Thermal band (TM 6). Arrows show thermally anomalous
features. (c) Mahalanobis distance image (R = 256 clusters). (d) ROC curves
plotting detection performance around the power plant. (Solid line) Band 6.
(Dashed line) CBAD (R = 32). (Dashed—dotted line) CBAD (R = 256).

V. DISCUSSION

CBAD provides a unified approach to object and change de-
tection based on a Gaussian mixture model. It has been shown
to be useful in detecting man-made objects that are: 1) present in
a single multiband image; 2) appear or disappear between two
images acquired at different times; or 3) manifest themselves as
spectral differences between two sets of bands acquired at the
same time.

The cluster-based method was motivated by previous work
in nonlinear mean square image estimation. Nonlinear image
estimation algorithms have been applied to change detection [5],
elevation data sharpening [6], and haze equalization [4]. In each
application, a nonlinear function is assumed to exist between
input and output subspaces. For change detection, it is between
two images acquired at different times, for haze equalization it
is between two sets of spectral bands acquired at the same time,
and for elevation sharpening it is between an image and gradient
information derived from lower resolution terrain elevation data.
A hash table implementation [2] stores the nonlinear estimate
¥ = E[y|xy] for each unique combination of input pixel values
X1, (pixel sets) computed from the output image:

Bhybal= - 3

(3,9)1%(6,5) =%

y(i,7) (23)

where N}, are the number of pixels with value xy.

Instead of computing estimates over pixel sets, the
cluster-based approach forms its estimates over clusters. It
can be viewed as a generalization of the nonlinear image
estimation technique. In nonlinear estimation, averaging is over

pixels with the same value. In cluster-based anomaly detection
averaging is over the pixels in a cluster

BylX]= 5 >

" ()] (i,d) C X,

y (i, ) (24)

where N, are the number of pixels in cluster r. The cluster-
based estimator thus reduces to the nonlinear image estimator
when clusters consist of unique pixel-value combinations.

The number of clusters is currently a user-specified param-
eter that depends on the spectral diversity of the scene. For large
spectrally diverse scenes, hundreds of clusters may be needed
to provide a sufficient number of degrees of freedom to adapt to
the different background types present. As a result noniterative
clustering algorithms like VQ, capable of efficiently partitioning
large images into large numbers of clusters, are desirable. Al-
though a VQ clustering algorithm was used here for efficiency
reasons, there is no reason why other techniques could not be
substituted. One area of future work is to evaluate alternative
algorithms, e.g., stochastic EM clustering algorithm [18], and
others.

The key question is how to determine the optimal number of
clusters. CBAD performance (Pd/Pfa) increases as the number
of clusters increases to a point, beyond which it decreases. Pfa
decreases as the background is subdivided into smaller, more
homogeneous clusters; Pd decreases when the number of clus-
ters become so large that the objects of interest form their own
clusters. The minimum description length (MDL) method [25]
can be used to pick the number of clusters that results in the
greatest compression of the data. McKenzie and Adler [20] find
MDL to be more efficient than Akaike information criterion for
Gaussian mixtures. Yeung et al. [34] describe a model-based ap-
proach using a Bayesian information criterion.

CBCD provides a fundamentally new approach to change de-
tection, one which does not involve a comparison of pixel values
(or linear functions of pixel values) between images. In contrast,
the Chronochrome algorithm estimates the background in the
test image as linear function of the reference image, and detects
changes on the whitened difference image [27]. Since CBCD
detects deviations in the background distribution over clusters,
changes that affect an entire cluster (correlated changes) are not
detected by CBCD. A large fraction of the background differ-
ences in the examples in Figs. 11 and 13 are correlated changes
(e.g., shading and shadow changes). They are a major source of
false change in the global change detection algorithm, but are
ignored by CBCD. Unfortunately, certain types of man-made
change (e.g., large scale forest clearing, cultivation, or urban de-
velopment) may appear as correlated changes and be missed by
CBCD.

CBCD, like most change detection techniques, requires the
images to be physically registered to each other. Preliminary
results indicate that CBCD is more tolerant of registration er-
rors than global change detection. The point where performance
breaks down needs to be explored further to determine its re-
lation to the size of the changes, their signal to noise ratio,
the number of clusters, and other factors. Differences in sensor
and lighting geometry produce false alarms due to layover and
shadow changes. CBAD currently uses an object-level strategy
to reduce false alarms as discussed in the Appendix. Another
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Fig. 17. CBAD object-level processing flow for object and change detection.

method, based on minimizing the Mahalanobis distance over a
local search window, is also being explored.

CBAD can be applied to cross-spectral (cross-sensor)
anomaly detection in the same way as it is used for two-image
change detection. Like CBCD, cross-spectral anomaly detec-
tion does not involve a comparison of pixel values (or linear
functions of pixel values) between bands. It differs from the
generalized spectral difference algorithm [14], which is a
whitened difference between linearly transformed reference
bands and test bands. The generalized spectral difference al-
gorithm operates between bands in much the same way as the
Chronochrome algorithm operates between images (compare
Hoff et al. [14, eq. (15)] with Stein et al. [27, eq. (24)]).

Algorithm fusion by combining local, reference image/band,
and cluster based models can offer significant performance
gains [7], [27] and is an important area of future work.

APPENDIX
OBJECT-LEVEL PROCESSING

Unlike RX, CBAD does not assume knowledge of an ob-
ject’s size or shape at the pixel level. Instead, it defers the use of
size/shape information until after detection, at the object level.
This allows different objects to be detected without having to
run multiple anomaly detectors.

Object and change detection systems often use a combina-
tion of pixel- and object-level processing techniques [7], [12].
Fig. 17 shows the object-level processing flow for object and
change detection. Objects (top path) are detected by thresh-
olding the Mahalanobis distance (MD) image from CBAD. Can-
didate man-made object pixels are those whose MD values (5)
exceed a threshold

;o7 — 17 dzr(L7J> >T
Alig) = {0, otherwise (AD)
where the threshold depends on the desired false-alarm rate.
Detected pixels A(%,j) are processed as spatially connected
regions [32]. This involves connected pixel labeling, which
builds a label map that represents each region (object) by a
unique value in the map. Next, a set of features are computed
for each connected region such as area, perimeter, centroid,
length, width, pose, average Mahalanobis distance within the
region, and others. Regions outside a given size range can be

(d)

Fig. 18. Change analysis example illustrating the remove of state changes.
(a) Forward change image. (b) Backward change image. (c) All changes.
(d) Object appearance and disappearance changes.

eliminated at this stage of processing, and remaining regions
scored based on desired object size/shape characteristics.

The two examples in Figs. 7 and 8 illustrate size filtering
and scoring. In the first example, the objective was to extract
large, spatially extended regions affected by bomb-damage. Re-
gions smaller than 500 pixels in area were eliminated. Those
that remained were scored by their average MD value. In Fig. 8,
the goal was to detect vehicle-size objects. Regions outside the
range of 15-30 pixels were eliminated. Remaining regions were
scored by their average MD value and compactness (area di-
vided by perimeter squared). (The values used in these examples
were empirically derived and are intended only to demonstrate
the ability to do filtering at the object-level.)

The same process is used for processing forward CBCD
changes. Forward changes are objects not present in a reference
image that appear in a new image. Candidate forward change
(appearance) object pixels are those whose MD values (22)
exceed a threshold 7,

s J1 dy.(i5) > Ty
Agli ) = {07 otherwise.

(A2)
The change detection examples addressed in Figs. 10-13 in-
volved forward change detection only.
Backward changes are objects present in the reference image
that disappear in the new image. Candidate backward change
(disappearance) object pixels are those whose MD values ex-

ceed a threshold 7,

autisd) = { el > (%)
where
di (i, §) = [x(3, 5) — mg s (s(3,5))]"

xC, L (s(4,4)) [x(4,5) — ma s (s(3,5))]  (Ad)
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(7, 7) is the new image cluster map, and

mg s = i Z X(ZJ)

® (i,4)€Ys
1 .. .. T
Cov= 53 Z [x(i, 7)) —my 4| [x(i, /) —mg, 4] 7. (A5)
(4,J)€Ys

Detected changes can be further processed at the object level to
eliminate false alarms caused by differences in shadowing, lay-
over, object pose, etc. between images. This can be accomplished
by removing spatially overlapping changes that occur in both di-
rections, which is illustrated in Fig. 18. Fig. 18(a) are forward
changes, where the box identifies a vehicle of interest. Fig. 18(b)
are backward changes, where the box indicates the same vehicle
at a different location at a later time. Fig. 18(c) are all forward
and backward changes. Fig. 18(d) are only those changes greater
than 50 pixels in area that do not overlap any opposite change.
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