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Abstract

The Multi-source Report-level Simulator (MRS) is a tool developed by Veridian Systems as part of its Model-
adaptive Multi-source Track Fusion (MMTF) effort under DARPA’s DTT program. MRS generates simulated
multisensor contact reports for GMTI, HUMINT, IMINT, SIGINT, UGS, and video. It contains a spatial editor for
creating ground tracks along which vehicles move over the terrain. Vehicles can start, stop, speed up, or slow down.
The spatial editor is also used to define the locations of fixed sensors such as UGS and HUMINT observers on the
ground, and flight paths of GMTI, IMINT, SIGINT, and video sensors in the air. Observation models characterize
each sensor at the report level in terms of their operating characteristics (revisit rate, resolution, etc.) measurement
errors, and detection/classification performance (i.e., Py, Ng,, P, and Pjq). Contact reports are linked to ground truth
data to facilitate the testing of track/fusion algorithms and the validation of associated performance models.

Introduction

Ground vehicle and sensor simulators are important tools used in the development of tracking, fusion, and related
exploitation algorithms. An important consideration in developing and testing track/fusion systems is the creation of
integrated multi-sensor test data sets (i.e., contact reports with ground truth) at an appropriate level of fidelity. Under
DARPA’s Dynamic Tactical Targeting (DTT) program, Veridian Systems is developing a Model-adaptive Multi-
source Track and Fusion (MMTF) system for exploiting data from ISR and organic sensors including GMTI,
HUMINT, IMINT, SIGINT, UGS, and video. In support of this work we have created a tool known as the Mult-
sensor Report-level Simulator (MRS) for generating simulated multi-sensor contact reports and ground truth. Like
Toyon's Ground Vehicle Simulator [1], MRS simulates ground vehicle tracks, but uses relatively simple motion
models. Striking a balance between low level signal/pixel level sensor simulations and high level exploitation
models (e.g., those used in SLAMEN [2]), MRS simulates sensor/exploitation processes at an intermediate level of
fidelity consistent with the models used in track/fusion systems like MMTF [3]. At this level, MRS produces
simulated contact reports containing measurements of a ground vehicle's location, observed features (e.g., size,
shape, speed, emissions, etc.), and classification/ID (as produced by an upstream ATR algorithm), as well as
estimates of the associated measurement errors and detection/classification performance. This information is
provided in the form of flat files (ASCII text) which can be easily imported into most tracking/fusion applications.

Architecture

The top-level MRS functional architecture is shown in Fig. 1. The ground truth specification file defines ground
tracks, vehicles, and the motion of vehicles along the ground tracks. Vehicles can start, stop, speed up, or slow
down. An interactive spatial editor is provided for creating ground tracks and sensor platform flight path files and
defining the locations of fixed sensors on the ground (e.g., HUMINT and UGS). Sensor/observation models consist
of two parts: the math model (e.g., a 2-D positional error covariance matrix), and the parameters of the math model
(e.g., range and cross-range errors, sensor azimuth). Sensor observation model specification files define sensor
locations (static, or moving along pre-defined flight paths), the observability of ground vehicles based on a digital
elevation model (DEM) of the terrain, and the parameters of the respective sensor/observation models. Ground truth
and sensor observation model specification files drive the sensor math models embedded within a discrete-time
simulator to produce contact reports.
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Simulations occur within a playbox whose spatial extent and origin within a larger coordinate system are defined in
the ground truth specification file (Table 1). Ground truth data are generated at a fixed rate. Locations are quantized
to a grid defined by the spatial resolution. The motion of each group of ground vehicles is defined by a separate
track file. A group consists of one or more vehicles, which can be arranged in a column when moving along roads,
or be randomly dispersed when moving cross-country. In MRS it is up to the user to make sure that the velocities

specified in track files are consistent with the types of vehicles represented.

Table 1 Ground truth specification file format.

Field Name Data Type Enumeration

Width of play box (m) integer >0

Height of play box (m) integer >0

X origin (m) integer

Y origin (m) integer

Resolution (m) integer >1

Sample time (sec) integer >1

Background image name (PICT) string filename

Number of g.t. tracks integer >1

Name of track 1 string filename

Start time (sec) integer >0

Formation string {column, dispersed}

Spacing (m) integer >0

Number of vehicles integer >1

ID of first vehicle string <predefined vehicle ID>
ete...
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Ground vehicle and sensor flight paths are defined by a set of N waypoints {Pn} that give the desired location and

velocity of an entity, P, = (X, Y,,V,), either on the ground, or at a given altitude. The path between P, and P,,,is
defined by a b-spline:
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for 0 < T < 1. Position along the b-spline is interpolated by stepping the index

. V(i)
(G +1) =r(j) +Of’—) G
n,n+1

where Ot is the sample rate, dn n+1 is the distance between P, and P,,,, and

V(i) =[1=r(DIV, +r(i)Vos )

is the interpolated velocity (speed) along the spline curve. The direction of motion along the spline is

o(r) = tan-lé“% ‘9’;(;)5 (5)

The b-spline is smoother than other cubic forms with continuous first and second derivatives, which makes it a good

choice for modeling both ground vehicle and sensor platform motion. Fig. 2 is a portion of a ground vehicle track
showing the waypoints and interpolated path.
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Fig. 2 Example of MRS ground track
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The following sections describe the GMTI, HUMINT, IMINT, SIGINT, UGS, and video sensor observation models
used in MRS.

Ground Moving Target Indicator (GMTI) Radar Model

In our model GMTI radars are assumed to fly at a constant altitude. Multiple GMTI radars may be defined, where
the position of each radar platform as a function of time is defined by its own track file. Parameters of the GMTI
sensor observation model are listed in Table 2.

Table 2 GMTI sensor observation model specification file format

Data Type Enumeration

Sensor resolution (m/pixel) integer >0

Range error (m) float >0
Cross-range error (m) float >0

Minimum detectable velocity (m/sec) float >0

Revisit time (sec) integer >0

Reuvisit time distribution string {constant, exponential}
Probability of Detection, Pd float [0.0,1.0]
Number of false alarms, Nfa float =20
Probability of Correct Classification, Pcc float [0.0,1.0]
Number of GMTI platforms integer >0

Track file for first platform string filename
Start time for first platform (sec) integer >0

Bias error X (m) float >0

Bias error Y (m) float >0
Observability map array (raw 8 bit file) string filename
Width of obs. map array integer >0

Height of obs. map array integer >0

etc.

Sensor resolution — For a standoff sensor like a GMTI, resolution can be treated as a constant parameter. Report
coordinates are quantized to multiples of the sensor resolution in the ground coordinate space.

Range and cross-range errors define the size of the positional error ellipse. The orientation of the ellipse varies as
a function of the sensor’s location relative to the moving target. In range vs. cross-range coordinates the covariance
matrix is:

M = . D (6)

cross-range |

where the range error is a parameter of the radar, and the cross-range error is a function of the beam-width and
range. Both are assumed constant over the radar sweep. In geographic coordinates, the covariance matrix is rotated
by the azimuth angle of the sensor platform relative to the moving target

_wz cos’ 0+ g? sin’ 6 sin 8cos 80> . —sin Bcos O O

range cross-range range Cross-range

M. =
geo %n@cos@oz —sinBcos O d. _sin’ 0+ & cos’ 6 0

range cross—range range cross—range

(7
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Minimum detectable velocity — Let V be the velocity vector of a moving target in the ground reference frame. If
X and Y are the locations of the target and the sensor, the component of the target’s velocity in the direction of the

radar is

v=v"(x-y)/(x =y)"(x -y) ®)

If a target’s velocity, U <U,, where U, is the minimum detectable velocity (MDV) of the radar, the target is not
detected by the radar.

Probability of detection and false alarm rates — The probability of detection (P4) and number of false alarms per
sq. km. (Ng,) are treated as constant parameters. P4 gives the probability of detecting objects whose radial velocity is
greater than the MDYV, and are observable by (in line of sight of) the radar. P4 may thus be reduced as a vehicle
slows, or is shadowed by the terrain.

Revisit rate may be either uniform or vary randomly according to an exponential distribution. For a uniform revisit
rate, the revisit time At is some integer number of seconds. For a random revisit rate, the distribution of revisit
times is, based on an exponential distribution model,

f(At) = e ©)
where 1/ B is equal to the average number of revisits over time.
Probability of correct classification - Discrete target features extractable from GMTI are modeled using confusion

matrices. Currently GMTI provides one feature, tracked-wheeled, with possible values: {tracked, wheeled, other}.
The confusion matrix is:

D:iracked\tracked Pwheeled\tracked I:thher\tracked B |1 cc % (1 - Fz:c) % (1 - I:z:c) S
B:?racked\wheeled Pwheded\wheeled F?)ther\wheded Dz E?(l_ Pcc) I:3:c %(1 - F)CC)D (10)
H:?racked\ other Pwheeled\other Pother |other H % (1 - Pcc) % (1 - R:c) I:z:c E

where P, is a constant provided by the user.

Bias error represents the navigational uncertainty of the sensor platform. The x and y components of the bias error
are constant positional offsets added to all report locations in the sensor track. Each sensor can have a different bias
error.

Observability — Let (0 be the depression angle of the GMTI, which depends on standoff range and altitude.
Assume for the sake of discussion that the GMTI platform is located to the east (azimuth angle 8=90°), and
let Z(X,Y) be the elevation map. The observability map is defined as follows:

(1, if xsing+Vz(x,y)cos = max{x'sin g+ Vz(x',y)cos }p%

: (11)
, otherwise 0

o(X, Y, ) =

where V is the vertical exaggeration (scale). In general, if the sensor azimuth angle is 0, the elevation map is
rotated so the look direction is along the +x axis, the observability map is computed, and the result rotated back. The
average observability over a surveillance orbit is the average of the observability maps over all sensor locations in
the orbit. For a N locations (e.g., spaced at 1 degree intervals in azimuth),
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Efo(uy] = = > o(xy.0) (12)

n

The average observability, normalized to the range [0,1], is used to locally modulate the probability of detection.

Unattended Ground Sensor Model

UGS are assumed to operate in clusters of three sensors. The locations of the sensors in each cluster are stored in a
separate file. Parameters of the UGS sensor observation model specification file are listed in Table 3.

Table 3 MRS UGS sensor observation model specification file format

Field Name Data Type Enumeration
Bearing measurement error (deg.) float >0
Revisit time (sec) integer >0
Revisit time distribution string {constant, exponential}
Pd vs. range table (low-level) string filename
Pd vs. range table (high-level) string filename
Pcc vs. range table (low-level) string filename
Pcc vs. range table (high-level) string filename
Number of UGS sensor clusters integer >0
UGS locations file for the first cluster string filename
etc.

Positional error covariance assumes M = 3 sensors located at (X;,V;), (X,,Y,), and (X;,Y;), each with i.i.d.

bearing measurement errors of variance e’ Assuming spherical propagation (ideal conditions), the positional
covariance at location (xo,yo) is [4]:

B sn’6, , sn°6,  sin’ 6, _sinfcosf sin@cosf _sin fcos g0’
2 2 2 2 2 2
e2|:| r.l r2 r3 rl r2 r3 |:| (13)
[} sinf,cosf, _sinB,cosf, sinf,cosé, cos’ §  cos’ §  cos’ § 0
2 2 2 2 2 2
E rl rZ r3 r.l r2 r3 H

where
6, = tan (Yo = Yi/%o = Xp)

. (14)
o= (Yo = Ya) (% = %)’

Probability of detection and false alarm rates — The probability of detection (P4) depends on range, and is
computed from tables at run-time. Two tables are required: one specifies P4 vs. range for lightweight targets (e.g.,
BMP-1), the other specifies P4 vs. range for heavyweight targets (e.g., MAZ-543). The tables give the Py at different
ranges; e.g.,
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0 0.7
500 05
1000 0.3
2000 0

where intermediate values are interpolated. For UGS, Ny, is assumed to be zero.

Probability of correct classification — Classification errors of UGS target features are represented in form of
confusion matrices parameterized by the average probability of correct classification (P.). As with Py, P, varies
with range and is computed from tables at run-time. Table 4 gives the enumeration of values for representative UGS
features [6,7].

Table 4 UGS features and values

Feature Values

Number of axles {2,3,4,6,8,0ther}

Number of cylinders {6,8,12,0ther}

RPM {2000,2100,2600,3200,3400,3600,0ther}
Weight {heavy, light, other}

Tracked-Wheeled {tracked, wheeled, other}

Revisit rate — Typically we assume a constant approximate 1 second revisit (reporting) rate for UGS.

UGS are placed by knowledge of an implicit near optimal placement rule based on an explicit optimal theoretical
model [4] (not currently implemented), which defines locations of minimum and locations, in specific regions, of
both minimum or near minimum target location error estimates with respect to the sensor locations. This implicit
rule also provides guidance for placement of sensors with respect to anticipated target trajectories.

SIGINT Model

We assume an angle of arrival (AOA) system where groups of three measurements at a time are used to generate a
positional error estimate. This allows us to use the same positional error math model as UGS. Parameters of the
SIGINT sensor observation model specification file are listed in Table 5.

Table 5 MRS SIGINT sensor observation model specification file format

Field Name Data Type Enumeration
Bearing measurement error (deg.) float >0
Revisit time (sec) integer >0
Revisit time distribution string {constant, exponential}
Pd float [0.0,1.0]
Sample spacing (m) float >0
Number of SIGINT platforms integer >0
Track file for first platform string filename
Start time for first platform (sec) integer >0
etc.

Positional error — Unlike UGS, where the sensors are fixed, SIGINT measurements are generated at a specified
revisit rate along a flight path at three locations: the current location (X1’ yl) plus two previous locations (Xz’ y2) ,

and (X3, y3) that are a specified sample spacing Ad apart
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V0GR H (N = Y2)" =0 =) H(Y, —Y,)° = (15)

In MRS the first SIGINT report is generated after the platform has moved at least 2Ad from its initial position.

In this system the measurements are taken sequentially and stored (along with precise platform locations) over the
time instants corresponding to the platform motion over the 2Ad distances. After the third measurement is taken
the target position estimate error is computed using Eq. 13. As in the case of UGS, an implicit sensor placement rule
governs the selected platform flight profile.

Probability of detection and false alarm rates — Like GMTI, SIGINT is a standoff sensor. Thus range does not
vary significantly over the simulated FOV and so P4 and Ny, can be treated as constants.

SIGINT features - Three target features: emitter frequency, emitter power, and pulse repetition frequency (PRF)
are currently modeled. Feature values are assumed to be uniformly distributed within specified ranges for each target
type; e.g., for a T-72 tan the ranges are emitter frequency: 30-76 Mhz, emitter power: 28-32 watts, and pulse
repetition frequency 0 (0-0).

IMINT Model

IMINT is assumed to be a wide-angle, standoff sensor. In contrast to GMT], targets are not detected if they are
moving faster than a given speed. Since the number of revisits are relatively few in number compared to the other
sensors, the number and parameters of the collections are specified explicitly instead of using a flight path model.
Parameters of the IMINT sensor observation model specification file are listed in Table 6.

Table 6 MRS IMINT sensor observation model specification file format

Field Name Data Type Enumeration
Number of revisits integer >0
Sensor 1 string {SAR,EQ}
Revisit time 1 integer >0
Sensor resolution (m/pixel) integer >0
Range error (m) float >0
Cross-range error (m) float >0
Maximum detectable speed float >0
Pd float [0.0,1.0]
Nfa float 20
Pid float [0.01.0]
Sensor 2 integer >0

etc.

IMINT features — IMINT provides measurements of target length and width. Let A

range and cross-range resolutions. In one dimension, the uncertainty (variance) in location of a point due to
quantization is (assuming a uniform error distribution):

A2

2 JE—
n Ir dr— (16)

-A/2

Since the range and cross-range errors are independent the covariance is
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2
1 |]Xrange 0 O
19 2 O (17)
12 | 0 Acr0$—range|:|
and the rms error is € = \/ % (Azrange + Azcrogs_range) . The rms error in estimating the length (or width) of a feature is

2€.

Probability of identification — Each IMINT sensor is assumed to contain an automated target recognition (ATR)
capability, with average probability of correct ID (Pjq). Like misclassification error, errors in incorrectly identifying
a target are modeled by a confusion matrix with elements

:EFi)d’i:j

P,
T HL-P) NI # ] (a8)

where N is the number of target IDs.

Video Model

Unlike GMTTI and SIGINT, which are wide-angle, standoff sensors, the resolution of a video report depends on the
range of the target. Given its limited field of view, the video sensor must be aimed at a particular point on the
ground. The location of the aim point is specified by a ground track file. Parameters of the video sensor observation
model specification file are listed in Table 7.

Table 7 MRS video sensor observation model specification file format

Field Name Data Type Enumeration
IFQV (radians) float >0
Aim angle error (radians) float >0
Sensor altitude (meters) float >0
Revisit time (sec) integer >0
Reuvisit time distribution string {constant, exponential}
Nfa (FA per sq. km.) float >0
Swath length (pixels) integer >0
Swath width (pixels) integer >0
Pd vs. resolution table string filename
Pd vs. incidence angle table string filename
Pid vs. resolution table string filename
Pid vs. incidence angle table string filename
Number of video platforms integer >0
Platform track file for first platform string filename
Start time of track (sec) integer >0
Ground track file (aim point) string filename
etc.

Resolution is a function of the instantaneous field of view (IFOV) of the video sensor, its distance from the target,
and the incidence angle. Video is assumed to have a fixed focal length, and constant IFOV. The range and cross-
range resolutions are:
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A,ange =ar/sing
(19)
A =ar

Cross—range

where O is the IFOV (in radians), I' is range, and (0 is incidence angle. When the sensor is overhead, ¢ = 90°,

A=A

range cross—range®

is A= LA WA where L is the length (x dimension), and W is the width (y dimension) of the video

range Cross—range

otherwise, range resolution is reduced due to foreshortening. The field of view (in sq. meters)

frame (in pixels)

Length and width errors — Target length and width measurement errors are assumed to be uniformly distributed

. - f 2 2
with zero mean and standard deviation 2\; % (Arange + Acr0$_range) .

Positional error covariance - The positional error variances in the range and cross-range directions are:

Ofnge = 021N’ @
(20)
2 — 2r2
cross-range O-(p

where O pat the variance of the aim angle (incidence angle) error. In geographic coordinates, the covariance matrix

is rotated by the azimuth angle @ of the video platform relative to the target

M= (071 COS” 0 + OF o range SIN” O sinfcos 60, —sin 6cos Bofmss_rmgeg on
geo — L 2 I i 2
%l NOCOSO0 . —~SINOCOSOO, o range  Trange SIN° O+ O s _range COS° O 0

Probability of detection and false alarm rate — Tables are used to define Py as a function of range and incidence
angle. Ny, is a constant, with the effective number of false alarms generated for a particular frame being AN fa-

Probability of identification — The video sensor system is also assumed to have some capability (ATR or human
operator) for identifying targets. Tables are also used to define the average P4 as a function of range and incidence
angle.

HUMINT Model

We assume a human observer measuring range, R and azimuth angle 8 (measured CW from true north) with
respect to a known position reference. Parameters of the HUMINT sensor observation model specification file are
listed in Table 8.

Table 8 MRS HUMINT sensor observation model specification file format

Field Name Data Type Enumeration

Range error (m) float >0

Bearing error (radians) float >0

Revisit time (sec) integer >0

Revisit time distribution string {constant, exponential}
Pd vs. range table string filename

Pid vs. range table string filename

Observer locations file string filename
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Positional error - The position of a point (XO ) yo) in Cartesian coordinates relative to a reference can be computed
from the measurements, viz.,

X, = R,sing,
22
Yo = Rycos6, )
The positional error covariance matrix is:
[b2sin’0+Rg;cos’0  i(0%—-R0;)sin26 O o

2. . 2. .
where Oy, is the range measurement error variance and O is the angle measurement error variance.

H (02 - Ro?)sin20

0% co 6+ RROZSin’ 6

Probability of detection and false alarm rate —P, vs. range is defined in a table which characterizes human
performance is detecting targets as a function of range. Ny, is assumed to be zero.

Probability of identification — P;4 vs. range is also defined in a table which characterizes human performance is
identifying targets as a function of range.

Report Format
Table 9 shows the current MRS output report file format. If a sensor is not used those fields have the value
“Unused”.
Table 9 MRS output file format
Column | Field Description Data Type Enumeration Example
Number
1 Sensor Type of sensor string {GMTI, UGS, SIGINT, IMINT
video, HUMINT, IMINT}
2 Sensor-ID Instance of one of these string EO
Sensors
34 Sensor-X-Y-Pos. X-Y location of sensor float,float 100121, 90010
platform
5 Time (sec,) Elapsed time of report integer >0 110
6,7 Tgt-X-Y Position East-west, north-south float,float 1180, 5480
(meters) location of report w.r.t origin
of scenario area
8,9,10 Tgt-2x2 Covar. Elements ¢11, ¢12, and ¢22 | float,float,float 100, 40, 200
(meters) of 2x2 positional covariance
11 Radial velocity Radial velocity w.r.t. look float >0 3.6
(m/sec) direction of the radar
12 ID One of N pre-defined string {T-72, BMP-1, BRDM-2 T-72
ground targets BTR-60, MAZ-543, MT-
LBU, M1035A2, GAZ-66,
ZIL-131, SA-8}
13 Pid Probability of correct float [0,1] 0.9
identification
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14 Wheeled-tracked Does the vehicle have string {tracked, wheeled, other} | tracked
wheels or tracks?
15 Wheeled-tracked- Probability of correct float [0,1] 0.6
Pcc classification of track-wheel
feature
16 Heavy-light Is the vehicle heavy or light? | string {heavy, light, other} heavy
17 Heavy-light-Pcc Pcc of track-wheel feature float [0,1] 0.6
18 Rpm Engine RPM string {2000, 2100, 2600, 3200, | 2100
3400, 3600, other}
19 Rpm-Pcc Pcc of RPM feature float [0,1] 0.6
20 No. cylinders Number of engine cylinders | string {6, 8, 12, other} 8
21 No. cylinders-Pcc Pcc of N-cylinders feature float [0,1] 0.6
22 No. axles Number of axles string {2,3,4,6, 8, other} 3
23 No. axles-Pcc Pcc of N- axles feature float [0,1] 0.6
24 Length (meters) Length of detected region float >0 4.6
25 Length-error Length measurement error float >0 05
26 Width (meters) Width of detected region float >0 2.3
27 Width-error Width measurement error float >0 0.5
28 Pd Probability of detection float [0,1] 0.9
29 Nfa Number of false alarms per | float >0 1.4
sq. km.
30 Emitter Freq. (Mhz) | Emitter frequency float >0 33
31 Emitter Power Emitter power float >0 2
(watts)
32 PRF (per sec.) Pulse repetition frequency float >0 0
33,34 G.t.X-Y-Pos. Ground truth x-y location float,float 1331, 202
(meters)
35 GtID One of N pre-defined string {T-72, BMP-1, BRDM-2 T-72
ground targets BTR-60, MAZ-543, MT-
LBU, M1035A2, GAZ-66,
ZIL-131, SA-8}
36 Gt UID Unique identifier in cases of | string T-72_1
multiple instances of the
same target ID
MRS Example

Consider a scenario (Fig. 3) in which one group of red forces (top arrow) leave a garrison and move into offensive
positions (circle in the northeast), followed by a second group a short time later (bottom arrow). As part of this

scenario, we used MRS to simulate the movement of 19 vehicles over a one hour period with the following sensors:
GMTI (located south and east of the playbox), 4 sets of UGS, video, SIGINT, HUMINT (2 observers), and IMINT
(SAR). Figs. 4 and 5 show the ground vehicle tracks, and sensor locations/flight paths. Roughly 18,700 ground truth
entries were generated (1 sec. sample time). For the two GMTI sensors operating at an average revisit rate of 10
sec., about 3900 reports were generated with Ng, = 0.01/sq. km. and a considerable amount of terrain obscuration in
the deployment area (Fig. 5). About 44 HUMINT reports were generated by two observers, 80 IMINT reports from
one SAR image near the end of the scenario, 300 SIGINT reports, 4700 UGS reports from the four groups of
sensors, and 1000 video reports.
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Fig. 3 Example scenario. Playbox is approximately 620 sq. km. in area
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Fig. 4 MRS spatial display showing ground tracks (black), UGS locations (blue), HUMINT observers (gray), and video
track (green).
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Fig. 5 MRS display zoomed out 8x showing SIGINT (purple) and GMTI (red) surveillance orbits.

Fig. 5 Ground vehicle tracks overlaid on observability map where Py = 0 (red) and Py = 1 (green).
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Summary

MRS is a software tool for generating simulated multisensor contact reports and ground truth. It contains a spatial
editor for creating ground tracks along which vehicles move over the terrain. Vehicles can start, stop, speed up, or
slow down. The spatial editor is also used to define the locations of fixed sensors such as UGS and HUMINT
observers on the ground, and flight paths of GMTI, IMINT, SIGINT, and video sensors in the air. Contact reports
provide measurements of a ground vehicle's location, observed features (e.g., size, shape, speed, emissions, etc.),
and classification/ID (as produced by an upstream ATR algorithm). They also include estimates of the associated
measurement errors and detection/classification performance of the sensors and their associated exploitation
processes for use by downstream tracking/fusion algorithms. MRS supports generic GMTI, HUMINT, IMINT,
SIGINT, UGS, and video sensors. Outputs are in the form of flat files (ASCII text) which can be easily imported
into most tracking/fusion applications.
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