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Abstract 
 

A nonlinear mean square estimation algorithm for cross-sensor image fusion and 
spectral anomaly detection is described. The algorithm can be used to enhance a 
low resolution image with a higher resolution coregistered multispectral image, 
and to detect anomalies between spectral bands (features in one spectral band that 
do not occur in other bands). Experimental results for Landsat data are presented 
illustrating the spatial enhancement of thermal imagery, the detection of thermal 
anomalies (heat sources), and the detection of smoke plumes. 

 
 

Introduction 
 
A variety of methods have been developed for fusing multisensor imagery for band sharpening, 
feature classification, and object/change detection. Examples include principal components (Li, 
Zhou, and Li, 1999), wavelet transforms (Gomez, Jazaeri, and Kafatos, 2001; Lemeshewsky, 
1999), pseudoinverse estimation and fuzzy reasoning (Patterson, Bullock and Wada 1992), and 
linear prediction (Tom, Carlotto, and Scholten 1985) for band sharpening; spectral mixing 
models (Gross and Schott, 1996) and neural networks (Shaikh, Tian, Azimi-Sadjadi, Eis, and 
Vonder Haar, 1996) for classification; signal subspace processing (Soumekh 1998), neural 
networks (Brown, Derouin, Beck, and Archer, 1992), and nonlinear transforms (Carlotto 2000) 
for multisensor/multispectral object/change detection.  
 
This paper describes the application of a nonlinear mean-square estimation technique originally 
developed for multispectral haze reduction (Carlotto 1999) to the detection of manmade objects 
and activities using a cross-spectral anomaly detection approach. The anomaly detector operates 
under the assumption that over natural backgrounds there is a high degree of correlation between 
spectral bands. Manmade activities, on the other hand, alter selected portions of the spectrum and 
thus introduce spectral anomalies at certain wavelengths. We use a nonlinear mean-square 
estimator to segment one set of spectral bands into different background types, and predict the 
average response over each background type in another set of bands. Spectral anomalies (pixels 
whose value differs from other pixels of the same background type) are detected based on the 
difference between their actual and predicted values. 
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Method 
 
Our approach is based on using a nonlinear mean-square estimator to estimate an output image 

! 

y  
from a set of coregistered input images 

! 

x . The estimator is a nonlinear mapping 

! 

˜ y = f x[ ]  
between the two image spaces. Papoulis (1965) shows that the optimal estimator is the 
conditional expected value 

! 

f = E y x[ ] . Note that because 

! 

f  depends on 

! 

y , the estimator is not 
predictive; i.e., it  assumes that the quantity being estimated is actually known. 
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Fig. 1 Spatial enhancement example 
 
Consider two signals, 

! 

x(t)  and 

! 

y(t) . Assume the first is from a high resolution sensor that is able 
to resolve two closely-spaced objects, while the second is from a lower resolution sensor that is 
unable to resolve the objects (Fig. 1). By graphically constructing the conditional expected value, 
it is evident that the two objects can be resolved in the estimate 

! 

˜ y (t) . 
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Fig.2 Anomaly detection example 
 
In Fig. 1 the two signals were at different resolutions but correlated. Fig. 2 depicts two signals 
that are highly correlated everywhere except over a short interval containing an anomalous pulse 
(a). Because the pulse is not present in the first signal, it is missing in the estimate ˜ y ( t)  and thus 
shows up as an anomaly in the difference y(t) ! ˜ y (t) . 
 
Fig. 3 shows a cross-spectral anomaly detector that uses one set of predictor bands to estimate 
another set of target bands (possibly at a different spatial resolution). The nonlinear estimate is a 
lookup table that is applied to the predictor bands to form a set of estimated target bands. 
Anomalous pixels are those whose difference exceeds a predetermined threshold. 
 

Thermal Band Sharpening 
 
Fig. 3a shows part of a Landsat TM thermal band image over Boston MA. The resolution of this 
image is 120 meters/pixel. Fig. 3b is the sharpened thermal band image produced by the 
nonlinear estimator operating on three visible/reflective IR band images (bands 2, 4, and 7) at 30 
meters/pixel. Notice the patterns of runways and streets in the sharpened image. Also notice the 
diagonal striping pattern caused by the thermal band detector’s array fixed pattern noise is 
removed in the sharpened image. The black region near bottom of the image is a cloud. 
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Fig. 3 Cross-spectral anomaly detection process 
 
 

 
a) Landsat TM thermal band image over 
Boston MA. 

 
b) Thermal band sharpened using TM bands 2, 
4, and 7. 
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c) Difference between actual and predicted thermal band images 

 
Fig. 3 Thermal band sharpening example 

 
 

 
a) TM thermal band image 

 
b) Thermal band estimated from TM bands 2,4, 
and 7. 

 
Fig. 4 Thermal anomaly detection example 



Proceeding sof SPIE on Signal processing, Sensor Fusion, and target Recognition XI (Vol. 4729), IIvan 
Kadar, Editor, Orlando FL, 1-3 April 2002. 

 285 

Thermal Anomaly Detection 
 
One expects that similar materials under similar conditions will be at similar temperatures. As 
shown in Fig. 3c, edge effects aside, differences exist between the higher resolution thermal band 
estimate and the original thermal band image. In many cases these differences are caused by 
manmade activities. Farther up the coast, in Salem MA, is a coal burning power plant at Salem 
Willows (Fig. 4). In the original thermal band image (a) the thermal discharge from the 
powerplant into the harbor is not evident. Because the temperature of the water is much less than 
the land, the heat of the adjacent urban areas of Beverly and Salem dominate. But because the 
thermal discharge is not evident in Landsat's visible and near infrared bands, a difference exists 
between the actual and predicted thermal band values in the vicinity of the powerplant (b). 
 
 

 
a) TM band 1 (blue) 

 
b) Band 1 estimated from bands 4, 5, and 7. 

 
Fig. 5 Visible-reflective IR anomaly detection example 

 

Visible-Reflective IR Anomaly Detection 
 
A similar opportunity exists between the visible and reflective IR bands for detecting the smoke 
plume from the powerplant. Previously it has been shown that it is possible to use the nonlinear 
mean-square estimator to remove wavelength-selective scattering phenomena from the visible 
bands by using information from the reflective IR bands (Carlotto 1999). Here we use the 
difference between the original and the haze-free estimate to detect the haze and smoke (Fig. 5). 



Proceeding sof SPIE on Signal processing, Sensor Fusion, and target Recognition XI (Vol. 4729), IIvan 
Kadar, Editor, Orlando FL, 1-3 April 2002. 

 286 

Again as in Fig. 4 the feature of interest, in  this case the smoke, is not evident in the origin 
image (a) but is significantly enhanced in the difference image (b). 

Discussion 
 
In order to detect manmade objects/activities using a single sensor the activity must be both 
visible to the sensor and distinct enough from the background to be detectable. This is 
particularly difficult in heavily vegetated areas where the activity may be concealed under 
canopy, or in urban areas where it can blend into the background. In thermal imagery, subtle 
temperature differences within a material type (e.g., trees) may not be noticeable in an image 
when large differences between materials (trees and open areas) are present nearby. Because 
materials in the scene are at different temperatures, one must know the material (background 
type) in order to assess its thermal state. The nonlinear estimator effectively segments an image 
into K  different background types (spectral vectors). The conditional expectation over the k-th 
background E[yx

k
]  provides a normalcy model for detecting anomalies within that background 

type. The model assumes that pixels with a similar (but in general, unknown) value in one set of 
bands will have a similar (but also unknown) value in a second set of bands. The nonlinear 
estimator determines the expected value in the second set of bands. In this way subtle differences 
within background types can be detected. 
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