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Abstract

A nonlinear mean square estimation algorithm for cross-sensor image fusion and
spectral anomaly detection is described. The algorithm can be used to enhance a
low resolution image with a higher resolution coregistered multispectral image,
and to detect anomalies between spectral bands (features in one spectral band that
do not occur in other bands). Experimental results for Landsat data are presented
illustrating the spatial enhancement of thermal imagery, the detection of thermal
anomalies (heat sources), and the detection of smoke plumes.

Introduction

A variety of methods have been developed for fusing multisensor imagery for band sharpening,
feature classification, and object/change detection. Examples include principal components (Li,
Zhou, and Li, 1999), wavelet transforms (Gomez, Jazaeri, and Kafatos, 2001; Lemeshewsky,
1999), pseudoinverse estimation and fuzzy reasoning (Patterson, Bullock and Wada 1992), and
linear prediction (Tom, Carlotto, and Scholten 1985) for band sharpening; spectral mixing
models (Gross and Schott, 1996) and neural networks (Shaikh, Tian, Azimi-Sadjadi, Eis, and
Vonder Haar, 1996) for classification; signal subspace processing (Soumekh 1998), neural
networks (Brown, Derouin, Beck, and Archer, 1992), and nonlinear transforms (Carlotto 2000)
for multisensor/multispectral object/change detection.

This paper describes the application of a nonlinear mean-square estimation technique originally
developed for multispectral haze reduction (Carlotto 1999) to the detection of manmade objects
and activities using a cross-spectral anomaly detection approach. The anomaly detector operates
under the assumption that over natural backgrounds there is a high degree of correlation between
spectral bands. Manmade activities, on the other hand, alter selected portions of the spectrum and
thus introduce spectral anomalies at certain wavelengths. We use a nonlinear mean-square
estimator to segment one set of spectral bands into different background types, and predict the
average response over each background type in another set of bands. Spectral anomalies (pixels
whose value differs from other pixels of the same background type) are detected based on the
difference between their actual and predicted values.
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Method

Our approach is based on using a nonlinear mean-square estimator to estimate an output image y
from a set of coregistered input images x. The estimator is a nonlinear mapping y = f [x]
between the two image spaces. Papoulis (1965) shows that the optimal estimator is the
conditional expected value f=F [ y| X]. Note that because f depends on y, the estimator is not

predictive; i.e., it assumes that the quantity being estimated is actually known.

Fig. 1 Spatial enhancement example

Consider two signals, x(¢) and y(¢). Assume the first is from a high resolution sensor that is able
to resolve two closely-spaced objects, while the second is from a lower resolution sensor that is
unable to resolve the objects (Fig. 1). By graphically constructing the conditional expected value,
it is evident that the two objects can be resolved in the estimate y(z).
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Fig.2 Anomaly detection example

In Fig. 1 the two signals were at different resolutions but correlated. Fig. 2 depicts two signals
that are highly correlated everywhere except over a short interval containing an anomalous pulse
(a). Because the pulse is not present in the first signal, it is missing in the estimate y(z) and thus
shows up as an anomaly in the difference y(r) — y(¢).

Fig. 3 shows a cross-spectral anomaly detector that uses one set of predictor bands to estimate
another set of target bands (possibly at a different spatial resolution). The nonlinear estimate is a
lookup table that is applied to the predictor bands to form a set of estimated target bands.
Anomalous pixels are those whose difference exceeds a predetermined threshold.

Thermal Band Sharpening

Fig. 3a shows part of a Landsat TM thermal band image over Boston MA. The resolution of this
image is 120 meters/pixel. Fig. 3b is the sharpened thermal band image produced by the
nonlinear estimator operating on three visible/reflective IR band images (bands 2, 4, and 7) at 30
meters/pixel. Notice the patterns of runways and streets in the sharpened image. Also notice the
diagonal striping pattern caused by the thermal band detector’s array fixed pattern noise is
removed in the sharpened image. The black region near bottom of the image is a cloud.
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Fig. 3 Cross-spectral anomaly detection process

a) Landsat TM thermal band image over b) Thermal band sharpned using TM bands 2,
Boston MA. 4, and 7.
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c) Difference between actual and predicted thermal band images

Fig. 3 Thermal band sharpening example
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b) Thermal band estimated from TM bands 2,4,
and 7.

a) TM thermal band imag

Fig. 4 Thermal anomaly detection example
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Thermal Anomaly Detection

One expects that similar materials under similar conditions will be at similar temperatures. As
shown in Fig. 3c, edge effects aside, differences exist between the higher resolution thermal band
estimate and the original thermal band image. In many cases these differences are caused by
manmade activities. Farther up the coast, in Salem MA, is a coal burning power plant at Salem
Willows (Fig. 4). In the original thermal band image (a) the thermal discharge from the
powerplant into the harbor is not evident. Because the temperature of the water is much less than
the land, the heat of the adjacent urban areas of Beverly and Salem dominate. But because the
thermal discharge is not evident in Landsat's visible and near infrared bands, a difference exists
between the actual and predicted thermal band values in the vicinity of the powerplant (b).

a) TM band 1 (blue) ) IE] estited fro and 4,5, an 7.

Fig. 5 Visible-reflective IR anomaly detection example

Visible-Reflective IR Anomaly Detection

A similar opportunity exists between the visible and reflective IR bands for detecting the smoke
plume from the powerplant. Previously it has been shown that it is possible to use the nonlinear
mean-square estimator to remove wavelength-selective scattering phenomena from the visible
bands by using information from the reflective IR bands (Carlotto 1999). Here we use the
difference between the original and the haze-free estimate to detect the haze and smoke (Fig. 5).

285



Proceeding sof SPIE on Signal processing, Sensor Fusion, and target Recognition XI (Vol. 4729), llvan
Kadar, Editor, Orlando FL, 1-3 April 2002.

Again as in Fig. 4 the feature of interest, in this case the smoke, is not evident in the origin
image (a) but is significantly enhanced in the difference image (b).

Discussion

In order to detect manmade objects/activities using a single sensor the activity must be both
visible to the sensor and distinct enough from the background to be detectable. This is
particularly difficult in heavily vegetated areas where the activity may be concealed under
canopy, or in urban areas where it can blend into the background. In thermal imagery, subtle
temperature differences within a material type (e.g., trees) may not be noticeable in an image
when large differences between materials (trees and open areas) are present nearby. Because
materials in the scene are at different temperatures, one must know the material (background
type) in order to assess its thermal state. The nonlinear estimator effectively segments an image
into K different background types (spectral vectors). The conditional expectation over the k-th
background EJ[ y|x ] provides a normalcy model for detecting anomalies within that background

type. The model assumes that pixels with a similar (but in general, unknown) value in one set of
bands will have a similar (but also unknown) value in a second set of bands. The nonlinear
estimator determines the expected value in the second set of bands. In this way subtle differences
within background types can be detected.
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