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Abstract

Improving change detection performance (probability of detection/false alarm rate) is an important goal
of DARPA's Dynamic Database (DDB) program. We describe a novel approach based on fusing the
outputs from two complementary image-based change detection algorithms. Both use historical imagery
over the region of interest to construct normalcy models for detecting change. Image level change
detection (ILCD) segments the set of images into temporally co-varying pixel sets that are spatially
distributed throughout the image, and uses spatial normalcy models constructed over these pixel sets to
detect change in a new image. Object level change detection (OLCD) segments each image into a set of
spatially compact objects, and uses temporal normalcy models constructed over objects associated over
time to detect change in the new image. Because of the orthogonal manner in which ILCD and OLCD
operate in space-time, false alarms tend to decorrelate. We develop signal-level statistical models to
predict the performance gain (output/input signal to noise ratio) of each algorithm individually, and
combined using 'and' fusion. Experimental results using synthetic aperture radar (SAR) images are
presented. Fusion gains ranging from slightly greater than unity in low clutter backgrounds (e.g., open
areas) to more than 20db in complex backgrounds containing man-made objects such as vehicles and
buildings have been achieved and are discussed.

Key Words: Change detection, algorithm fusion , image-level fusion, performance modeling, synthetic
aperture radar (SAR).

1. Introduction

Multi-sensor fusion has been applied in a variety of remote sensing and reconnaissance applications
including land use/land cover classification, terrain and feature extraction, change detection, and object
recognition. In DARPA's Dynamic Database (DDB) program (Kessler 1990) fusion techniques are used
to improve change detection and object classification performance. This paper describes a new way to
improve change detection performance by fusing the outputs from two different change detection
algorithms operating on data from the same sensor. We show that because of the orthogonal nature of the
change detection algorithms used it is possible to achieve significant fusion gains by this approach.

After briefly summarizing the two change detection algorithms in Section 2, signal-level statistical
models are derived in order to predict the performance of each algorithm individually, and combined
using 'and' fusion (Section 3). Results from several experiments over different image backgrounds are
presented in Section 4. Areas for future work are discussed in Section 5.



2. Detecting Change in Space and Time

DDB employs two different algorithms for detecting change. The first, known as object-level change
detection (OLCD), was originally developed under DARPA's Semi-Automated IMINT Processing (SAIP)
effort (Welby 1999). OLCD detects and maintains a database of target-like regions in SAR (Tom et al
2000) and electro-optical (EO) imagery (Hoogs and Mundy 2000). Regions which appear, disappear or
change state are labeled as possible changes. Conceptually, OLCD spatially segments images into
compact target-like regions, models the behavior of these regions, and detects changes in time.

The second algorithm, image level change detection (ILCD) was developed under the DDB program for
detecting changes in complex backgrounds (Carlotto 1999, 2000b). ILCD, which operates on EO as well
as SAR, segments a set of reference images (i.e., images that do not contain targets of interest) into
spatially distributed, temporally co-varying pixel sets. Each pixel set corresponds to a unique background
type (Carlotto 2000a). Changes in a new image are detected spatially by comparing the values within each
pixel set to the average over the pixel set.

Changes detected by ILCD and OLCD are fused by the object level change fusion (OLCF) component in
DDB (Berlin et al 2000). Because of the orthogonal manner in which ILCD and OLCD operate in space-
time (ILCD is temporal segmentation followed by spatial normalcy modeling and detection while OLCD
is spatial segmentation followed by temporal normalcy modeling and detection), false alarms tend to
decorrelate. OLCF exploits this property to enhance change detection performance by reducing the false
alarm rate.

3. Performance Modeling

To simplify our analysis we assume that OLCD operates on pixels instead of objects, and approximate the
spatial and temporal normalcy models used by ILCD and OLCD as simple averages in space and time
(Figure 1).

Figure 1 ILCD and OLCD normalcy models

Consider the pixel a  in Figure 1. Let bn
 be the other pixels in the same co-varying pixel set as a . The

error in predicting a  from the spatial average of the bn
 (ILCD prediction error) is
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where the total number of pixels in the set is N +1. Let cn
 be the regions (assumed here to be a single

pixel in extent) associated with a  over time. The OLCD prediction error is the error in predicting a  from
the temporal average of the cn
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where M  is the number of reference images.

The mean squared ILCD prediction error is:
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Assuming jointly normal random variables we can parameterize the statistics in terms of the means and
covariances as follows:
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The signal to noise ratio (SNR) is the signal divided by the noise power:
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where 0 ≤ ≤1, when N  is large
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As the covariance between random variables in the ILCD normalcy model increases (approaches unity)
the SNR increases because we can do a better and better job of estimating a  spatially from the bn

.

The OLCD SNR is derived in the same fashion and is
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where as above
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As the number of images M  increases
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As the covariance between random variables in the OLCD normalcy model increases (approaches unity)
its SNR also increases because it can do a better and better job of estimating a  temporally from the cn

.

In DDB OLCF fuses ILCD and OLCD outputs at the object level. ILCD objects are connected regions
where the squared prediction error exceeds a specified constant false alarm rate (CFAR) threshold. OLCD
objects are compact regions that have changed based on a similar CFAR criterion. Here we approximate
the performance of OLCF by modeling it, as we have ILCD and OLCD, at the signal (prediction error)
level.

The expected value of the product of the ILCD and OLCD prediction error images is
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from which we derive the OLCF SNR
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where 
bc

2 = 2 . This is analogous to an 'and' fusion rule.

Table 1 summarizes the algorithm correlations:  is the correlation of random variables between ILCD
and OLCD normalcy models, and  and  are the correlations within the ILCD and OLCD normalcy
models respectively.

Table 1 ILCD, OLCD, and OLCF parameters

a b b' c c'
a 1
b 1
b' 1
c 1
c' 1

To show the benefit of fusion we define the OLCF to ILCD, and OLCF to OLCD processing gains:

Gainbc / b =
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1− − +
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(14)

assuming 
b = c

. In general, ILCD performs well when  is large, OLCD performs well when  is

large, and OLCF performs well when  is small. Figure 2 plots theoretical fusion gains for = .
Appendix A describes statistical methods for estimating , , and  from images.
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Figure 2 Fusion gains predicted by signal level performance model



Table 2 Targets in open

SNR
Measured
SNR (db)

Measured
Processing
Gain (db)

Predicted
Processing Gain
(db)

Estimated
Component
Parameters

Input 43.1
ILCD 42.3 -0.8 2.8 ˆ = 0.34
OLCD 23.5 -19.6 0 ˆ = 0.25
OLCF 44.3 1.2 6.5 ˆ = 0.06

Table 3 Targets in trees

SNR
Measured
SNR (db)

Measured
Processing
Gain (db)

Predicted
Processing Gain
(db)

Estimated
Component
Parameters

Input 35.2
ILCD 38.7 3.5 4.6 ˆ = 0.47
OLCD 24.7 -10.5 0.7 ˆ = 0.31
OLCF 49.8 14.6 8.7 ˆ = 0.14

Table 4 Targets near facility

SNR
Measured
SNR (db)

Measured
Processing
Gain (db)

Predicted
Processing Gain
(db)

Estimated
Component
Parameters

Input 26.2
ILCD 38.6 12.4 9.5 ˆ = 0.69
OLCD 17.5 -8.7 2.2 ˆ = 0.41
OLCF 48.4 22.2 16.1 ˆ = 0.27

Table 5 Targets embedded in manmade clutter

SNR
Measured
SNR (db)

Measured
Processing
Gain (db)

Predicted
Processing Gain
(db)

Estimated
Component
Parameters

Input 27.2
ILCD 46.9 19.7 8.5 ˆ = 0.66
OLCD 14.2 -13 4.1 ˆ = 0.53
OLCF 56.2 29 16.4 ˆ = 0.34



4. Experimental Results

The performance of a detection algorithm is determined by its output signal and noise probability
distributions p(ysignal )  and p(ynoise). The probabilities of detection (Pd) and false alarm (Pfa)
depend on the operating point t

Pd (t) = p(y > t signal) Pfa (t) = p(y > tnoise). (15)

Algorithm performance can also be expressed in terms of the signal to noise ratio (SNR)

SNR = s − n( )2
( s

2 + n

2 ). (16)

Computed over the new image (input SNR), the SNR is indicative of the performance of single image
Neyman-Pearson (CFAR) detector. Computed over the prediction error image (output SNR), the SNR is
indicative of the CFAR performance of ILCD or OLCD at the signal (pre-detection) level. The difference
between input and output SNR (in db) is a measure of the performance gain of the change detector.To
evaluate the performance models we selected four SAR images collected by Veridian's DCS sensor over
the DDB Eglin Site 12 study area. These images represent the deployment of targets in four different
clutter environments: in the open, near trees, near a facility, and embedded in man-made clutter. Tables 2-
5 summarizes the experimental results. The first column in each table shows the input SNR and the output
SNR from ILCD, OLCD, and OLCF (pre-detection level). The measured processing gain (second
column) is the output minus input SNR. The predicted processing gains (third column) were obtained
from Eqs. 8, 11, and 14 using component parameters (fourth column) estimated from the images as
discussed in the appendix. As the complexity of the scene increases the fusion gain increases with the
highest gains achieved in manmade backgrounds.

Although the predicted and measured performance gains agree in terms of their overall trend there are
significant differences between them. In heterogeneous scenes, using a single global statistic to represent
the covariances within different background types is one potential source of error. Another is attempting
to compute statistics over background typescontaining a limited number of samples (i.e., when M  and/or
N  is small).

5. Future Work

Improving the accuracy of our performance model is one important area for future work. In particular we
shall explore the possibility of developing local estimates of performance over each background type.

Because OLCD fuses ILCD and OLCD outputs at the object level, in order to obtain a more meaningful
measure of performance it is necessary to model the performance of the components following CFAR
detection. This is a second area for future work.

Detecting change in high clutter backgrounds with significant target obscuration is an important
operational challenge. Combining detections across looks at the signal level using 'or' fusion (Carlotto
2000b) or using adaptive fusion strategies (Liggins and Nebrich 2000) are two possible alternatives.
Extending our performance model to other fusion rules is a third area for future work.



Appendix - Parameter Estimation

 characterizes the performance of ILCD. To estimate  we first compute the correlation coefficient
between the new image y  and its average over Sk
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when N  is large. We use the average of the estimates over all pixel sets as the estimated value of  for
the image.

 characterizes the performance of OLCD. To estimate  we measure the correlation coefficient
between a pixel in the new image y   and the temporal average of the associated reference image pixels
xn

, and average the results to obtain an estimate of  for the image:
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when M  is large.

Finally to obtain an estimate of , which characterizes the performance gain of OLCF, we measure the
correlation coefficient between the ILCD and OLCD predicted error images:
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Expanding Eq. 7 we have
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from which the following expression is obtained
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