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Abstract. A new method for reducing the effects of space-varying, wavelength-
dependent scattering in multispectral imagery caused by smoke and haze is
described. It is intended for use in situations where atmospheric scattering affects
the shorter wavelengths and varies in space. The method converts an image in
which space-varying scattering is present into an image where the scattering has
been equalized over the entire image, so that previously developed techniques for
removing constant scattering effects can be used. The spectral measurement space
is viewed as consisting of two subspaces: one spanned by the bands that are
affected by scattering, the other by the bands that are not. A correspondence
between the two subspaces is established and used to predict the values of the
former bands (i.e., what their values would be without scattering) from the latter.
Our haze equalization algorithm is compared to an earlier de-hazing algorithm
developed by Lavreau that subtracts a portion of the fourth tasselled cap feature,
used as an estimate of the atmospheric component, from the visible bands. While
both are shown to be effective in removing space-varying smoke and haze, the
de-hazing algorithm tends to remove subtle detail and increases the spectral
correlation between the visible bands, while the haze-equalization algorithm
preserves subtle detail and maintains the spectral balance between bands.

1. Introduction

Atmospheric scattering affects the ability to accurately estimate physical proper-
ties of the surface (e.g., soil moisture and biomass) from remotely sensed imagery. In
many cases this can, in turn, reduce the accuracy of land cover classification and
change detection algorithms. Although a variety of atmospheric correction techniques
have been described, few are capable of handling space-varying effects, e.g., smoke
plumes from brush fires and factories, smoke and haze that is present in and around
urban areas, and haze that often settles in low-lying areas overnight. It has been
observed that the fourth tasselled cap feature is particularly sensitive to the amount
of aerosols in the atmosphere (Crist et al 1986). Lavreau (1991) describes one such
method for removing space-varying haze and smoke that subtracts a portion of the
fourth tasselled cap feature from those spectral bands requiring correction.
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A new method for reducing the effects of space-varying, wavelength-dependent
scattering in multispectral imagery caused by smoke and haze is described in this
paper. It is intended for use in situations where atmospheric scattering affects the
shorter wavelengths and varies in space. In our approach the spectral measurement
space is viewed as consisting of two subspaces: one spanned by the bands affected
by scattering, the other by the bands that are not. The correspondence between the
two subspaces is used to predict the former bands as a function of the latter on a
pixel-by-pixel basis. Our method converts an image in which space-varying scattering
1s present into an image where the scattering has, in effect, been equalized over the
entire image so that previously developed techniques for removing constant scattering
effects can be used.

2. Background

Assume the atmosphere can be modelled as a horizontally homogeneous medium,
the earth is a Lambertian reflector, and atmospheric properties which vary exponen-
tially with altitude can be assumed to be constant over the scene (Sjoberg and Horn
1983). We also assume that the contribution of the ambient illumination (skylight)
can be neglected. Under these conditions, the sensed irradiance (brightness) z can
be modelled by a linear relation

z=ar+b (D

where r is the radiance of the surface, a represents the effects of atmospheric
transmittance, sensor gain, and other multiplicative factors, and b represents the
contribution of the path radiance. When the scattering is constant over the image,

z(i,j)=ar(i,j)+b (2)

The brightness values at two or more pixels in the image together with measurements
of the surface radiance at the corresponding locations on the ground can be used to
solve for a and b.

When ground data is not available several methods have been developed to
estimate the path radiance component. Dark pixel subtraction (Crane 1971) assumes
that somewhere in the image there is a pixel with zero illumination or zero reflectivity
such that the sensor irradiance depends only on the path radiance. The regression
method (Potter and Mendlowitz 1975) and regression intersection method (Crippen
1987) have been developed for multispectral images. The former obtains an estimate
of the path radiance contributions by performing a linear regression analysis between
two bands at a time over pixels with the same material type. The latter performs
linear regression analyses over two or more sets of pixels each with the same material
type and uses the intersection of the regression lines to estimate the path radiance
terms.

All of the above methods assume that the effects of scattering are constant over
the image. A de-hazing technique for Landsat Thematic Mapper (TM) developed
by Lavreau (1991) subtracts a portion of the fourth tasselled cap feature (Crist and
Cicone 1984) from each band. The method effectively removes space-varying haze
but causes the corrected bands to become more correlated thus altering the spectral
balance of the data.
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3. Methodology
When the effects of scattering are not constant over the image, the image
formation model becomes

2(i, j) = a(i, j)r(i, j) + b(i, j) (3)

Assume that it is possible to segment the image into disjoint regions within which
the radiance of the surface can be assumed to be constant. Let S, represent the set
of pixels in the k-th region. Within the k-th region the brightness is

Zjr = Qg T + by, (4)

where r, is the surface radiance. The terms g;, and b,, k'€ S, represent the effective
variation in the atmospheric transmittance and path radiance for the pixels within
the region. The mean value of the brightness in the k-th region is

Zy=Elzi,]=E[ayJri + E[b.] (5)

and is computed over the pixels k'e S,. We assume that the pixels within each of
the K regions are randomly distributed throughout the image and that the variation
in scattering within the image is such that the distribution of atmospheric trans-
mittance and path radiance effects is the same in all regions. The validity of this
assumption is examined in §5. Thus E[a,,]=u, =a and E[b,,]=pu, =b are the same
for all of the regions and

Zy=ar,+b (6)
Assembling the K regions back into an image we have
20, j)=ar(i,j)+b (7)

thus reducing the space-varying case to a simpler one in which the scattering can
be treated as a comnstant over the image (equation (2)). Our method converts an
image in which space-varying scattering is present into an image where the scattering
has, in effect, been equalized over the entire image so that previously developed
techniques for removing constant scattering effects can be used. A key requirement
1s that we are able to segment the image into regions of constant surface radiance.

The dependence of scattering on wavelength is a function of the size of the
particles relative to the wavelength of the radiation (Schanda 1986). Scattering
by molecules whose radius is much less than the wavelength of light 1 has a A*
dependence, affecting the shorter wavelengths below 0.4 um. Particulates such as
smoke and haze with a radius between 0.11 and 104 have a wavelength dependence
between A 4 and A%, respectively. Depending on the amount of smoke and haze in
the atmosphere, portions of the surface obscured in the shorter wavelengths may be
visible in the infrared. As the size of the particles increases relative to A the scattering
does not depend strongly on wavelength. Thick clouds, fog, and dust thus tend to
be opaque in the visible and the infrared portions of the spectrum.

In multispectral imagery, haze (and smoke) tend to affect the shorter wavelengths
(i.e., the visible bands), often having negligible effect in the infrared bands. Let the
multispectral image be divided into two sets of bands Z={X, Y} where X are the
bands that are affected by haze and Y are the bands that are not. To be specific we
shall focus on Landsat TM (although the method is applicable to other multispectral
sensors as well) and assume that in a given situation the visible bands (Landsat TM
bands 1- 3) are affected by haze while the infrared bands (Landsat TM bands 4, 5
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and 7) are not. The validity of this assumption is also examined in §5. Thus x(j, j, m)
is the brightness at pixel (i,j) in the m-th visible band and y(i, j, n) is the brightness
at pixel (i, j) in the n-th infrared band.

Let X™ and Y¥ denote the corresponding M- and N-dimensional visible and
infrared subspaces where M =N =3. A point in the infrared subspace corresponds
to pixels that have the same values in the infrared bands. It is conjectured that pixels
with the same infrared values are likely to be the same surface material with the
same illumination and topography. In the absence of scattering, each point in the
infrared subspace is assumed to correspond to a point in the visible subspace
(figure 1(g)). This is an approximation because the visible bands provide information
not contained in the infrared. If we assume that the distribution of pixels with the
same infrared values are randomly distributed throughout the image, when scattering
is present the visible band values of those pixels will be affected by varying amounts,
i.e., will have higher or lower brightness values because of increased or decreased
path radiance in different parts of the image. Thus in situations where space-
varying scattering is present in the visible bands, points in the infrared subspace will
correspond to a set of points in the visible subspace (figure 1(b)).

Figure 2 shows two coregistered Landsat TM band 1 images over Bitterfeld
Germany. The images are 955 x 807=770685 pixels in size. The image shown in
figure 2(a) was acquired in September 1986 and contains a great deal more smoke
and haze than the second image (b) which was acquired about one year later. Analysis
of bands 4, 5 and 7 in the September 1986 image reveal that there are over 81000
regions, i.e, unique combinations of band 4-5-7 values. The locations of pixels
contained in one particular combination are plotted as crosses in (a) and (b). This
particular combination of pixel values occurs over forested areas which showed
little if any change between the two acquisitions. Histograms of band 1 values at
those locations in the two images are plotted in (¢) and (d). In comparing the two
histograms, (c) has a higher mean and standard deviation than (d) because there is
more smoke and haze in (@) than in ().

The correspondence between the two subspaces is used to establish a functional
relationship that is used, in turn, to predict the values of the visible bands (i.e., what
their values would be without scattering) as a function of the infrared bands. Let
ye= { yi(n)} denote the vector corresponding to the k-th unique combination of values
in the infrared bands where y,(n) is the value of the n-th infrared band for the k-th
combination (region). Let {x,,, k' € S,} denote the set of visible band values that
occur within the k-th region where x,.(m) is the value of pixel k' in the m-th band.

XM YN XM yN

<—J"—" - - T ™0
(k) y(k) y
{x(k')k" € S,}

(a) )

Figure 1. Idealized relation between subspaces with and without haze. (a) In the absence of
scattering, each point in the infrared subspace corresponds to a point in the visible
subspace. (b) When scattering is present n the visible bands, each point in the infrared
subspace corresponds to multiple points in the visible subspace.



Space-varying wavelength-dependent scattering 3337

(&)

Frequency Frequency
n =104 =99
c=34 c=2.7
Band 1 Value Band 1 Value
1l

(c) (d)

Figure 2. Example showing effects of haze in Landsat TM visible band over Bitterfeld,
Germany. (a) Band 1 of September 1996 image. Locations of pixels having the same
infrared values in bands 4, 5 and 7 marked by crosses. (b) Band 1 of September 1987
image. Locations are the same as in September 1986 image. (c) Histogram of September
1986 band 1 image computed over locations marked by crosses. (d) Histogram of
September 1987 band 1 image computed over locations marked by crosses.

The joint distribution
P(x(m), y)=P(x(m), y(1) ... y(N)) (8)

is the probability of observing a particular combination of values in the m-th visible
band and all N infrared bands. For a given combination of values in the infrared
bands, the optimal estimate for the value of the m-th visible band is given by the
conditional mean:
ZS xk,(m)P(x(m)zxk,(m), Y=Yk)

A k1 €S,

X (m)=E[x;,(m)]y:] Ply=v,) %)
It can be shown that the conditional mean minimizes the mean-squared prediction
error of x(m) as a function of y (Papoulis 1965). In other words it provides the best
single haze-free value to assign to the x,,(m) in each region.

The above computation can be efficiently performed using two tables G and H,,
containing K entries each. In the first table, G={g[y,]}, we count the number of
times each y, combination occurs, 1e., the number of pixels in the image where
y=y, and store it in the k-th entry. In the second table H,,={h,,[y,]} we add the
values in the m-th visible band that occur for each y, combination and store it in
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the k-th entry; i.e.,
halyid= 3. xi(m) (10)

kt€ Sy
The haze-equalization then becomes a simple table look-up

by, Ly(i, j)]
gLy, j)]

and is equivalent to the result given in equation (9). The above procedure is repeated
for each of the M visible bands requiring equalization.

(1)

(i, j, m)=

4. Experimental results

The above method has been evaluated on several images to date. We present
results from one of these images over Bitterfeld, Germany shown previously in
figure 2. Figure 3 shows the original and haze-equalized band 1--3 images for the
September 1986 image. The results have been stretched for visual presentation. Like
the de-hazing technique described by Lavreau (1991), our method effectively removes
the space-varying haze. Lavreau’s de-hazing algorithm subtracts a portion of the
fourth tasselled cap feature £(i, j) from the visible bands

X‘(iaj; m):x(i,j, m)_[t(laj)_[oj('(m) (12)

where ¢, is a haze threshold and c¢(m) are empirically derived parameters. (We used
a haze threshold f, =8 and the values for c(m) given in Lavreau (1991) for the
Bitterfeld image.) As noted by Crist et al. (1986) the fourth tasselled cap feature
responds to atmospheric haze as well as to senescent vegetation, man-made materials
(e.g., roads), some soils and water. Thus by subtracting a portion of the fourth
tasselled cap feature from the visible bands, information about the surface may be
lost in the process of removing the haze. One such example is shown in figure 4 in
which road information lost by de-hazing has been retained by haze equalization.

As noted by Lavreau (1991), de-hazing can increase the correlation between
bands. Stated another way, de-hazing alters the covariance between spectral bands.
Table 1 gives the mean vector and covariance matrix for bands 1 -5 and 7 of the
original September 1986 image (a), our haze equalized image (b), and Lavreau’s
de-hazed image (c). The mean and covariance of the haze equalized image are similar
to those of the original image. On the other hand, there are significant differences
between the original and de-hazed images.

The eigenvalues describe the spectral covariance structure of a multispectral
image. Figure 5(a) compares the distribution of the eigenvalues corresponding to the
three eigenvectors (principal components) computed from bands 1--3 before and
after application of Lavreau’s algorithm. A significant increase in the first eigenvalue
indicates an increase in the spectral covariance between the three visible bands.
Figure 5(b) compares the distribution of the eigenvalues before and after application
of our haze equalization algorithm. The covariance structure of the haze equalized
bands is similar to the original (uncorrected) bands. This is also seen in figure 5(c)
and (d) which compare distributions of eigenvalues corresponding to all six eigen-
vectors computed from the visible and infrared bands (thermal band excluded).
These plots show that the haze equalization algorithm better preserves the overall
covariance structure and spectral balance of the multispectral image than de-hazing.
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(0 Band 3 original (left) and corrected (right)

Figure 3. Haze equalization results for Bitterfeld image. (@) Band 1, (b) band 2 and (c) band 3.
Original images are on the left and the corrected images on the right.

5. Discussion

We have assumed that the image has been accurately segmented into regions of
constant surface radiance and that the distribution of scattering effects is the same
in all regions. The mean brightness of the m-th visible band in the k-th region

Xi(m) = E[x, (m)] = E[ay,(m)]r(m) + E[by,(m)] (13)
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(@) (b)

Figure 4. Visual comparison of algorithms for band 1 over a portion of the Bitterfeld image.
(a) De-haze algorithm, (b) haze-equalization algorithm.

Table 1. Multispectral mean vectors and covariance matrices for original, haze-equalized,
and de-hazed images.

(a) Original
116.066284 45.554211 50.109211 69.625824 71.849411 31.888096
127.000114 59.302757 103.847336 0.033049  160.567062 126.271233
59.302757 39.833733 62.917965 7.886708  110.276688 81.478416
103.847336 62.917965 123.433228 —20.487764  210.688232 165.396027
0.033049 7.886708 —20.487764 323.857666 71.057640 —44.248352
160.567062 110.276688 210.688232 71.057640  542.554688 344.827271
126.271233 81.478416 165.396027  —44.248352  344.827271 273.400940
(b) Haze-equalized
115.600853 45.105686 49.666210 69.625824 71.849411 31.888096
97.215675 46.591694 86.843170 1.161113 162.753220 126.954926
46.591694 34.113445 55.777279 8.188755  110.966141 81.929604
86.843170 55777279 111.220657  —21.229876  210.821304 165.665787
1.161113 8.188755 —21.229876 323.857666 71.057640 —44.248352
162.753220 110.966141 210.821304 71.057640  542.554688 344.827271
126.954926 81.929604 165.665787  —44.248352  344.827271 273.400940
(¢) De-hazed
56.208080 16.963457 17.564022 42.382725 29.187757 12.252388
201.142242 114.881042 188.957840 30.445232  307.457520 192.445755
114.881042 69.460320 110.166336 27.281473  182.937408 111.103218
188.957840 110.166336 186.410583 9.111508  300.428864 193.511002
30.445232 27.281473 9.111508 316.975281 89.896416 —26.092583
307.457520 182.937408 300.428864 89.896416  601.640198 340.576141
192.445755 111.103218 193.511002  —26.092583  340.576141 239.631714

is estimated from the infrared bands (equations (9), (11)). Assuming the surface
radiance is constant and the atmospheric transmittance and the path radiance effects
are the same in all regions,

E[x¢,(m)] = pa(m)r(m) + py (m) (14)
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Figure 5. Covariance structure of multispectral image before/after de-hazing and haze equal-
ization (a) Eigenvalues (visible bands) before/after de-hazing, (b) eigenvalues (visible
bands) before/after haze-equalization (c) eigenvalues (all bands) before/after de-hazing,
(d) eigenvalues (all bands) before/after haze-equalization.

In the absence of scattering, w,(m)=1, u,(m)=0, and E[x,,(m)]=r(m). The variance
of the m-th visible band in the k-th region is

Var [x,(m)] =1 (m) Var [a,,(m)] + Var [by,(m)] + r,(m)Cov [a(m), by, (m)] ~ (15)

where Cov[a,,(m), b,,(m)] 1s the covariance between the atmospheric transmittance
and the path radiance. Given the same assumptions

Var[x,,(m)]=r(m)og(m) + o3 (m) + r(m)og, (m) (16)

In the absence of scattering, Var[x, (m)]=0 otherwise, when scattering is present,
the variance is a function of the surface radiance.

Figure 6 plots the mean value and standard deviation within regions greater than
100 pixels in size for bands 1-3 in the September 1986 image (the means are shown
above the standard deviations). The results have been sorted in increasing order of
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Figure 6. Mean and standard deviation within regions in image of Bitterfeld with more haze.
{a) Within band 1, (b) within band 2, (¢) within band 3.

the means. In all three, the standard deviation increases with the mean. The rate at
which the standard deviation increases (i.e.,, the slope of the plot) is greater in band
1 than bands 2 and 3. The minimum value of the standard deviation is also greater
in band 1 than bands 2 and 3. Although we do not know the actual values of the
terms on the right-hand sides of equations (14) and (16), if our assumptions are
valid the results in figure 6 can be interpreted as follows:

e The rate at which the standard deviation increases is related to variance of the
atmospheric transmittance term o2(m) in equation (16) which decreases with
increasing wavelength.

e The minimum value of the standard deviation is related to the variance of the
path radiance term o¢2(m) in equation (16) which also decreases with increasing
wavelength.

If our assumptions are valid, in an image with lesser amounts of space-varying
scattering, the standard deviation should not increase as much and the minimum
values of the standard deviation should be about the same in all bands. For compar-
ison purposes we used bands 4, 5 and 7 from the September 1986 image to segment
the September 1987 image. Because the two images were acquired a year apart there
are regions in the September 1987 visible bands in which the surface radiance is not
constant. Figure 7 plots the mean and standard deviation for bands 1- -3 of the 1987
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Figure 7. Mean and standard deviation within regions in image of Bitterfeld with less haze.
(o) Within band 1, (b) within band 2, (¢) within band 3.

image over regions with the same infrared values in the September 1986 image. The
standard deviations are about the same overall and do not appear to increase as a
function of the mean as in the 1986 image. The jump in the standard deviation at
the far right in each plot in figure 7 occurs in the brightest regions which showed
the greatest amount of change between the two dates.

The above assumes that scattering does not affect the infrared bands. But as
noted earlier clouds, fog, and dust are opaque in the visible and infrared. At present
we rely on the user to determine if the method is applicable to a given image. When
it is applied to images containing clouds we have found that although the overall
spectral balance is not altered, information about certain surface features is lost. For
example, thin roads may disappear and the contrast of man-made objects within
built up areas may be reduced. The development of more automated methods for
determining when and where in an image to apply the technique is an area for
future work.

5. Conclusion

A new method for reducing the effects of space-varying, wavelength-dependent
scattering in multispectral imagery caused by smoke and haze was described. The
method converts an image in which space-varying scattering is present into an image
where the scattering has, in effect, been equalized over the entire image so that
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previously developed techniques for removing constant scattering effects can be used.
The algorithm predicts the values of those bands that are affected by scattering from
those that are not on a pixel-by-pixel basis. It was compared to an earlier algorithm
for removing space-varying haze and found to better preserve subtle detail in the
image and spectral balance between bands. Future work will concentrate on testing
the algorithm as part of a land cover classification system in order to assess its effect
on classification accuracy, and on methods for determining when and where in an
image it should be applied.
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