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Abstract

The accurate classification of remotely-sensed imagery usually requires some form of ground truth data.
Maps are potentially a valuable source of ground truth but have several problems (e.g., they are usually out-
dated, features are generalized, and thematic categories in the map often do not correspond to distinct
clusters or segments in the imagery). We describe several methods for using maps to automate the
classification of remotely-sensed data, specifically Landsat Thematic Mapper imagery. In each, map data
are coregistered to all or a part of the image to be classified. A probability model relating spectral clusters
derived from the imagery to thematic categories contained in the map is then estimated. This model is
computed globally and adjusted locally based on context. By computing the probability model over a large
area (e.g., the full Landsat scene) general relationships between spectral categories and clusters are captured
even though there are differences between the image and the map. Then, by adjusting and applying the
model locally, new features can be extracted from the image that are not contained in the map and, in certain
cases, different classes can be assigned to the same cluster in different parts of the image based on context.
Experimental results are presented for several Landsat scenes. Several of the methods produced results that
were more accurate than the map. We show that these methods are able to enhance the spatial detail of
features contained in the map, identify new features not present in the map, and fill in areas in which map
coverage does not exist.
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1. Introduction

The accurate classification of remotely-sensed imagery usually requires some form of ground truth data.
Maps are a potentially valuable source of ground truth data but have several problems. Unlike imagery
which contains a great deal of spatial detail, maps are spatially generalized (i.e., small features eliminated,
boundaries smoothed, positions of features altered to improve the appearance of the map product). In maps
thematic categories often do not correspond to distinct clusters or segments in the imagery (e.g., built up
areas which contain a mixture of man-made materials such as concrete, trees and other kinds of vegetation,
etc.). Finally, maps are often old and thus do not contain all of the features that are present in the image.

We describe several methods for using maps to automate the classification of remotely-sensed data,
specifically Landsat Thematic Mapper (TM) imagery. These methods use a map coregistered to all or a part
of the image to be classified. A probability model relating spectral clusters derived from the imagery to
thematic categories contained in the map is developed. This model is computed globally and adjusted
locally based on context. By computing the probability model over a large area (e.g., the full Landsat scene)
general relationships between spectral categories and clusters are captured even though there are local
differences between the image and the map. Then, by adjusting and applying the model locally based on
context, new features can be extracted from the image that are not contained in the map and, in certain cases,
different classes can be assigned to the same cluster in different parts of the image.
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2. Map-Based Methods

Mason et al (1988) survey the use of map data to guide the segmentation and classification of remotely-
sensed imagery. Maps have been used to guide the segmentation process (McKeown et al 1985), to select
training areas for classifier development (Catlow et al 1984), to partition imagery into similar types of
regions prior to classification (Hutchinson 1982), and to estimate prior probabilities (Strahler 1980). Maps
have also been used as additional sources of information used in classification (Anuta et al 1976).

We use maps as a source of ground truth information for classification, specifically for developing
probability models that are used to assign classes in the map to clusters derived from the image.
Unsupervised clustering converts an input image x (i, j) into a cluster image k(i,j) consisting of K values
each corresponding to a cluster. Map data are rasterized and the image and map are coregistered. The map
image m(i,j) is assumed to contain M classes.

The joint distribution p(k,m) is the probability that the k-th image cluster occurs together with the m-th
map class over the entire joint data set. The joint distribution is used to compute the conditional distribution
(observation model)

p(klm) = p(k,m)[ p(m) ey

which gives the probability of observing the k-th cluster given the m-th class where

K

p(m) =Y plk.m) )

k=1

is the marginal distribution of classes. The Bayes classifier assigns the class m’ with the highest posterior
probability to each cluster

m' (k) = argmax {p(m | k)}

. . (3)
= argmax { p(k | m) p(m)/ p(k)} = arg max{ p(k | m)p(m)}
where p(m) are the prior probabilities for the M classes and
M
P = Y plk.m) @

m=1

is the marginal distribution of clusters. It is noted that the observation model p(klm) and prior
probabilities p(m) may be computed from different sources of information, or over different parts of the
data set.

The Bayes classifier minimizes the probability of error

K

P(e)=1- E plm(k), k) 5)

k=1

by assigning the class m(k) with the largest posterior probability to each cluster k. If the relationship
between classes and clusters is distinct, then the probability of error will be relatively small. If there is
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overlap between classes and clusters (i.e., if image clusters correspond to multiple map classes and vice
versa), the probability of error will increase. Several factors can potentially contribute to this overlap:
changes that occur between the time the map was compiled and the image acquired (including seasonal
changes), cartographic generalization (e.g., small features eliminated, boundaries smoothed, positions of
features altered to improve the appearance of the map product), misregistration, and spectral variations
within classes over the image.

3. Global vs. Local Methods for Computing the Joint Distribution

The joint distribution captures the relationship between image clusters and map classes. In order to assess
the impact of the above factors, global and local methods of computing the joint distribution are considered.
The global method computes the joint distribution over the full data set, and uses it to derive a single
observation model and set of prior probabilities that are used to classify the full data set. We shall refer to
this classifier as a GJGP classifier (global joint and global priors). The GIGP classifier is

m' (kG j)) = arg max{p(m | kGG, )}

©)
= arg max {p(k(i, /)| m) p(m)}

where the output image class m' depends only on the cluster & .

The local method partitions the data set into N regions. Within each region, the joint distribution is
computed and used to derive an observation model and set of prior probabilities that are used to classify
that region. We shall refer to this classifier as a LILP classifier (local joint and local priors). The posterior
probability in the n-th region is

p(mlk,n) = p(k,nlm) p(m)[ p(k, n) = p(k,m,n)[ p(k,n)

7
= p(k | m, ) pGm, )] p(k, 1) = p(k | m,m)p(m | m)p(m)] pk,m) ™

where p(k|m,n) is the observation model and p(m|n) are the priors for the n-th region. The LJLP
classifier is

m'(kG, j),n(i, ) = argmax{ p(kG, /)| m,n(i, /) plm | nG, )} (8)

where the output image class m' depends on the cluster £ and the region 7 . In Section 5 we evaluate both
classifiers and find that the global method of estimating the joint distribution to be superior to the local
method for the data set considered.

4.  Estimating the Priors

We now consider alternative methods for estimating the priors. All assume the joint distribution is
computed globally over the full data set. The first two methods use a single set of priors over the full data
set. They are referred to as global joint global priors (GJGP) classifiers. The last three methods compute
the priors over subsets of the data. They are referred to as global joint local priors (GJLP) classifiers. All
five methods are evaluated in Section 5.

4.1  Global Methods for Computing the Priors
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If there is a distinct relationship between classes and clusters; i.e.,
plk1m(k)) > p(k1m),m = m(k) ©)

the choice of the prior probabilities is not critical and can, in lieu of other information, be assumed to
uniformly distributed. The first classifier (GJGP-1) simply assumes a uniform distribution for the prior
probabilities, i.e. p(m) =1/M .

In most situations there is overlap between classes and clusters. In order to minimize the probability of
error it is necessary to bias the conditional distributions to favor those classes that are more likely to occur
in the image. The second classifier (GJGP-2) assumes that the probability of the m-th class in the image is
equal to the probability of the m-th class in the map, i.e., p(m) = p(m).

4.2  Local Methods for Computing the Priors

A problem is using a single set of priors for the entire data set is that the same cluster may correspond to
different classes in different parts of the image. For example, the GJGP-2 classifier assigns the most
probable class to each cluster. Large classes thus tend to dominate. Three methods have been developed to
adjust the priors locally. All three use some form of contextual information. The general form of these
global joint and local priors (GJLP) classifiers is

m'(kG, j),n(i, ) = argmax { p(kG, j) | m)p(m I nG, )} (10)

This equation is similar to Eq. 8 except that the joint distribution is computed globally and so the
observation model does not depend on 7 . Depending on the classifier, the variable n will take on different
meanings as discussed below.

Knowledge-Based Contextual Classifier - The first classifier (GJLP-1) adjusts the prior distribution of
image classes ﬁ(m I (i, j)) as a function of the map class n(i, j) . These priors can, in principle, be derived

from knowledge about how the map was compiled and how the map and image differ, e.g., due to changes
between the time the map was compiled and the image acquired. The GJLP-1 classifier is given by

m'(kG, j),n(i, ) = argmax{ p(kG, /)| m)p(m  n(i, ) (11)

where the output image class m' depends on the cluster k and map class n . Lacking specific knowledge
of map compilation and changes we assume the following distribution for the priors:

dm=n

pimln) = {(1 —d) /(M - 1), otherwise (12)

where 1/M <d <1. At one extreme, when d = 1 the output image class is forced to equal the map class;
thus m’(k(i, ) n(i, j)) = n(i, j) . At the other extreme when d = I/ M the image classes are equally probable

regardless of the map class and the result is the same as the GJGL-1 classifier. Between these limits there
is a blending of map and image-derived information.

Window-Based Contextual Classifier - The second classifier (GJLP-2) estimates the prior probabilities
from the local distribution of clusters within a window. The estimate of the distribution of classes is
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H(min) = %2 p(m k,n)plk,n) = Zp(m Lk, m)pk I n) . (13)

where p(k | n) is the distribution of clusters within the n-th window. If the conditional distribution does not
depend on 7 , it can be estimated from the joint distribution, i.e., p(m|k,n) = p(m|k) = p(k,m)/[p(k). The
GJLP-2 classifier is given by

m' (kGi, j), n(i. ) = argmax{ p(kG, j) | m)p(m | nG, j))} (14)

where the output image class m’' depends on the cluster k and window n. The GJLP-2 classifier
emphasizes those classes that are most likely given the local distribution of clusters within the window. In
effect, the local distribution of clusters functions as a form of context to adjust the class priors. Thus the
same cluster can be assigned different classes in different parts of the image depending on the context. As
weshall see later in Section 5, if this method is applied within a rectangular window, as the window moves
across the image, clusters that are assigned one class in one window may be assigned a different class in an
adjoining window. The switching of classes for a cluster is particularly noticeable when the cluster crosses
the boundary between regions.

Feature-Based Contextual Classifier - The third method of estimating priors locally (GJLP-3) uses the map
to partition the image into N regions, one for each map class, and to estimate the distribution of image
classes within each map class. It is well-known that in the compilation of maps, a single thematic category
may be assigned to a map feature that is, in fact, composed of a mixture of categories (e.g., built-up areas
which contain a mixture of man-made materials plus trees and other kinds of vegetation). The GJLP-1
classifier assumes that this mixture (prior distribution) is known. Because image clusters and map classes
overlap, we can instead attempt to infer this mixture indirectly through the association of map classes and
image clusters in the same way as was done in the GJLP-2 classifier using Eq. 13 where p(kln) now
represents the distribution of image clusters within the n-th map class. The GJLP-3 classifier is given by

m'(kG, j),n(i, ) = argmax{ p(kG, )| m)p(m  n(i, ) (15)

where the output image class m' depends on the cluster & and the region n defined by the n-th map class.
The GJLP-3 classifier emphasizes those image classes that are most likely given the local distribution of
clusters within a map class. As with GJLP-2, this distribution of clusters functions as a form of context to
adjust the class priors so that the same cluster can be assigned different classes in different parts of the
image depending on the context. In areas that do not contain map information, 1.e., where n =0, we can
assume p(m10) = p(m) .

5. Experimental Results

The map-based classification methods described in the previous sections have been evaluated over two full
Landsat Thematic Mapper (TM) scenes. The first is over New Mexico (path 33, row 36) and was acquired
on April 15, 1994 (Figure 1a). The second is over Virginia (path 15, row 34) and was acquired on October
23, 1993. USGS 1:250,000 scale Land Use/Land Cover (LU/LC) maps were rasterized, resampled,
mosaicked, and coregistered to the Landsat data. The LU/LC map over the New Mexico scene is shown in
Figure 1b. For the New Mexico scene, the LU/LC classes were merged into a reduced set of classes as
summarized in Table 1. As shown in the table a two level classification scheme is used so that we can
quantify the performance of the map-based classifier at different levels of thematic resolution. A similar
classification scheme was used for the Virginia scene. A set of 300 random sample points were generated
over each scene and classified visually by an image analyst. For the New Mexico scene, Landsat TM
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imagery was used as truth. Landsat TM and 5 meter/pixel M7 aircraft multispectral imagery were used as
truth in the Virginia scene. The sample points were used to estimate the overall accuracy (number of correct
sample points divided by the total number of sample points) of each of the map-based classification
methods.

Level 1 Classes Level 2 Classes LU/LC (Anderson)
Classes
Built-Up High Density 11
Low Density 12-17
Grassland/ 21-24
Agriculture
Rangeland 31-33
Forest Deciduous 41
Evergreen 42
Mixed 43
Water 51-54
Wetland 61-62
Barren Sand 71-73
Rock 74-75
Soil 76-77
Tundra 81-85
Snow/Ice 91-92

Table 1 Definition of land cover classes

Both Landsat TM images were clustered using a spectral shape clustering technique (Carlotto 1995) that is
based on representing the spectral data in terms of the relative values between bands. The technique
automatically determines the number of clusters and found 257 clusters in the New Mexico scene and 166
clusters in the Virginia scene.

In order to assess the local and global methods of computing the joint distribution, the overall accuracy of
the Bayes classifier was measured as a function of the size of the region classified (Eq. 8). A 4000x4000
pixel region in the center of the New Mexico scene was classified as a single, 4000x4000 pixel region, as
four 2000x2000 pixel regions, and as sixteen 1000x1000 pixel regions. In each classification the joint
distribution and prior probabilities are computing over the same area where

K

p(mln)= 2 p(k,m|n) (16)

k=1

where p(k,m|n) is the joint distribution in the n — th region. Level 2 classification results are summarized
in Table 2. As the size of the region decreases, the average accuracy decreases and the variation in
individual accuracies within regions increases; i.e., individual accuracies can be much higher or much lower
than the average. This suggests that it is better to estimate the joint distribution over large areas and so
favors global joint (GJxx) over local joint (LJxx) classifiers.

Area of 9% Accuracy within Region(s) Average | Standard
Region(s) Deviation
4000 72 72
2000 83 70 69 64 71 11
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1000 63 66 100 50 90 100 71 75 67 22
81 69 57 85 25 28 66 50

Table 2 Classification accuracy as a function of the size of the region classified
We then compared the overall Level 2 accuracies of five GJxx classification methods:

1) Bayes classifier using a uniform distribution of image class priors (GJGP-1)

2) Bayes classifier where the distribution of image class priors is assumed to equal to distribution
of map classes (GJGP-2)

3) Knowledge-based contextual classifier where the distribution of image class priors for each
map class is assumed known (GJLP-1)

4) Window-based contextual classifier where the distribution of image class priors is estimated
from the distribution of clusters within non-overlapping windows for different window sizes
(GJLP-2)

5) Feature-based contextual classifier where the distribution of image class priors is estimated
from distribution of clusters within each map classes (GJLP-3)

The overall classification accuracy of each method over the full New Mexico scene is shown in Table 3.
Except for the first and third methods (GJGP-1 and GJLP-1), the accuracies are comparable (for 300
points the 95% confidence interval is about +5%). For the third method, the measured accuracies were
between that of the map (57%) and the first method (46%).

Method 90 Accuracy

Bayes Classifier - Uniform Priors (GJGP-1) 46
Bayes Classifier - Priors Estimated from Map (GJGP-2) | 63
Knowledge-Based Contextual Classifier (GJLP-1) 57-46
Window-Based Contextual Classifier | 1600 x 1600 67
(GJLP-2) 800 x 800 66

400 x 400 66

200 x 200 65

100 x 100 66
Feature-Based Contextual Classifier (GJLP-3) 67
Accuracy of LU/LC Map 57

Table 3 Comparison of map-based classification methods over New Mexico scene

Figure 1c shows the full scene GJLP-3 classification result. (The images in Figure 1 are reduced 40x in
resolution. The classes have been merged and assigned shades of gray: water and wetlands are darkest,
followed by forested areas, grassland/agriculture, rangeland, and barren; built-up areas are the brightest.)
For all classifiers the distribution of errors were randomly distributed across the scene (Figure 1d shows
the distribution of GJLP-3 errors).

Figure 2 shows the LU/LC map along with the results for the GJGP-2, GJLP-2 and GJLP-3 classifiers
over Albuquerque. (The images in this figure are reduced 5x in resolution.) Although the overall accuracies
of these three methods are comparable over the full scene, the GJLP-2 classifier identified only a small part
of the imagery of Albuquerque as built-up (Figure 2b). An edge effect noted earlier can be seen in the
GJLP-2 classification image in the upper right corner of Figure 2c. In addition, a large number of pixels
were classified as built-up along the west slope of the Sandia Mountains east of Albuquerque. In the
GJLP-3 classification result (Figure 2d) these errors are not present.
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Similar experiments were performed for the Virginia scene and comparable results obtained. Table 4
summarizes the accuracy of the GJLP-3 classifier and the LU/LC maps for the two scenes at Levels 1 and
2. Based on these results, it appears that by using maps in conjunction with imagery we are able to
significantly improve the overall thematic accuracy over that provided by maps alone.

Data Source(s) 9 Accuracy
New Mexico Scene Virginia Scene
Level 1 Level 2 Level 1 Level 2
LU/LC Map 58 57 77 55
LU/LC Map + 67 67 81 66
Landsat TM
Imagery
Absolute 9% 10% 4% 11%
Improvement
Relative 15% 18% 5% 20%
Improvement

Table 4 Summary of Results for Two Scenes for GJLP-3 Classifier

6. Discussion

In Section 5, the overall accuracy was found to decrease as the size of the region used to compute the joint
distribution decreased. The probability of error depends on the overlap between classes and clusters. Four
potential factors that can contribute to this overlap are: changes between the map and the image,
cartographic generalization, misregistration, and spectral variations within classes over the image.
Cartographic generalization and misregistration will tend to affect all parts of the data set and would thus
not favor one method over the other. (We note that since the Landsat imagery is acquired close to nadir,
misregistration is not strongly dependent on terrain relief and will tend to be distributed uniformly over the
entire scene. For off-nadir geometries the effect would be expected to be more severe over mountainous
areas.) Changes between the map and the image will, in most cases, tend to be localized and thus affect
some parts of the data set more than others. The results do in fact show that some regions are classified
much more accurately as the window size decreases. Unfortunately more regions are classified less
accurately because of changes and so the overall accuracy decreased. Spectral variations within classes did
not appear to be a significant factor for the clustering method used since the overall accuracy did not
decrease as the size of the region increased.

Based on these preliminary observations we tend to favor the use of larger windows for estimating the joint
distribution. Except for the use of uniform priors and assumed prior distributions in the GJGP-1 and
GJLP-1 classifier, the other three methods for estimating the priors (GJGP-2, GJLP-2, and GJLP-3) did
not result in significantly different overall accuracies. However the context-based classifiers were able to
extract more built-up areas over Albuquerque than the Bayes classifier and seemed qualitatively to give
better results.

Perhaps our most interesting finding is that the accuracy of a map-based classification can be better than
the accuracy of the map itself. By selecting the class with the largest posterior probability (a non-linear
operation), the classifier is somewhat tolerant of small errors between map classes, image clusters and
ground truth. An important area of future work is to better understand the relationship between the
clustering and map errors on classification accuracy.
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7. Summary

The use of maps to automate the classification of remotely-sensed imagery was described. Local and global
methods for estimating the joint distribution, which captures the relationship between image clusters and
map classes, were evaluated. For the scene considered, the overall accuracy was found to decrease as the
size of the region used to compute the joint distribution decreased, thus favoring global estimates of the
joint distribution over local ones. Five methods of estimating the prior probabilities were then described and
evaluated. Two involve choosing a single set of values that are used to classify the entire data. However
because a cluster can correspond to different classes in different parts of the scene, three additional
methods were developed to estimate the prior probabilities as a function of context. The first assumes that
the distribution of image classes for each map class is known. The second method estimates the prior
probabilities as a function of the distribution of clusters within fixed sized windows that cover the image.
The third estimates the distribution of image classes from the distribution of clusters within map feature
classes. Three of these five methods produced results that were more accurate than the map. We show that
these methods are able to enhance the spatial detail of features contained in the map, identify new features
not present in the map, and fill in areas in which map coverage does not exist.
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a) Landsat TM Image b) USGS LU/LC Map

¢) Feature-Based Contextual Classification

d) Spatial Distribution of Errors

Figure 1 Results for New Mexico Scene
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¢) Window-Based Contextual Classifier d) Feature-Based Contextual Classifier
(1600x1600 window)

Figure 2 Classification Results over Albuquerque, New Mexico
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