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Abstract 
 
Content-based retrieval techniques can be characterized in several ways: by the manner in which 
image data are indexed, by the level of specificity/generality of the query and response of the 
system, by the type of query (e.g., iconic or symbolic), and by the kind of information used 
(intrinsic image features or attached information such as text). The method described in this 
paper automatically indexes images in the database, and is intended to retrieve specific objects 
by image query based on inherent image content. Our method is actually quite similar to object 
recognition except that instead of searching a single image for a given object, an entire database 
of images is examined. The approach uses linear phase coefficient composite (LPCC) filters to 
encode and match queries consisting of multiple images (e.g., representative views of an object 
of interest) against multiple images in the database simultaneously. Retrieval is a two-step 
process that first isolates those portions of the database containing images that match the query, 
and then identifies the specific images. Our use of LPCC filters exploits phase information to 
retrieve specific images that match the query from the database. The results from the 
experiments suggest that phase information can be used to index and retrieve multiple images 
from a database in parallel, and that large numbers of operations can be performed 
simultaneously using a complex number representation. In one experiment well over 100 real 
correlations were effectively performed by a single complex correlation. Problems encountered 
in processing video data are discussed. 
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1. Introduction 
 
Content-based retrieval techniques can be characterized in several ways: by the manner in which 
image data are indexed, by the level of specificity/generality of the query and response of the 
system, by the type of query (e.g., iconic or symbolic), and by the kind of information used 
(intrinsic image features or attached information such as text). For example, some systems 
require manual or interactive indexing to outline potential objects of interest, textures, etc., while 
others extract features of the image as a whole or of objects within the image that can be used as 
indices. The level of specificity/generality of the system is a function of the underlying 
representations. For example color histograms allow images similar in the global distribution of 
colors to be found given a query image but cannot identify images containing specific objects. 



Representation of shape features allows images to be retrieved that contain specific objects that 
match the shape of the query, subject to a set of allowable distortions. Query by example systems 
require some form of iconic input (either a graphical sketch or image example). More traditional 
data retrieval systems use symbolic input (e.g., text, SQL, or other descriptions of the 
objects/images of interest. Finally some image retrieval systems do not actually use intrinsic 
features of the images themselves but rather attached information in the form of relational or 
object-oriented description or free-text. (See [1] for an early discussion of alternative access 
methods for image retrieval. The system described in [2] embodies many of the above ideas and 
is among the most mature content-based image retrieval today. Descriptions of other techniques 
and systems developed to date can be found in [3-5].)  
 
According to the above criteria, the method described in this paper automatically indexes images 
in the database, and is intended to retrieve specific objects by image query based on inherent 
image content. Our method is actually quite similar to object recognition except that instead of 
searching a single image for a given object, an entire database of images is examined. The 
approach uses linear phase coefficient composite (LPCC) filters [6] to encode and match queries 
consisting of multiple images (e.g., representative views of an object of interest) against multiple 
images in the database simultaneously. Retrieval is a two-step process that first isolates those 
portions of the database containing images that match the query, and then identifies the specific 
images. Our use of LPCC filters exploits phase information to retrieve specific images from the 
database that match the query.  
 
The next section reviews synthetic discriminant function (SDF), and LPCC filters. Application of 
LPCC filters to image indexing and retrieval are discussed in Section 3. Differences between our 
LPCC filter implementation and that of Hassebrook et al [6] are noted. Results from several 
experiments performed on a database of images captured from a news broadcast are presented in 
Section 4. Section 5 discusses advantages and disadvantages of LPCC filters for content-based 
retrieval. 
 
2. Synthetic Discriminant Function Filters 
 
Two basic approaches in object recognition are to either characterize and recognize objects of 
interest in terms of features that are invariant to the kinds of distortions expected, or to construct 
and match a set of representative views of the object to the image. SDF filters are an example of 
the later approach. If H = {hk} is a matrix whose columns contain the representative views 
(training images) arranged in lexographic order, the general form of the SDF filter is 
 
      f = Hw      (1) 
 
where the weight vector w is computed to achieve a desired response.  
 
 



 
 

Fig. 1  LPCC weights are uniformly spaced phasors  
 
 
The LPCC filter is a kind of SDF filter where the weight vector consists of linear phase 
coefficients [7]. The general form of the n-th order LPCC filter is: 
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Hassebrook et al have used multiple LPCC filters both to improve filter SNR as well as for 
parameter estimation. Consider the first-order filter 
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where the weights are uniformly-spaced phasors as shown in Fig. 1. Let z = fTg be the output of 
the filter in response to the input g. Assume the training images are real, non-negative, and 
normalized to unit energy; i.e., 
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If the input consists of one of the training images hk' plus additive white Gaussian noise n, the 
expected value of the response of the LPCC filter is 
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For noise alone, the expected value is zero. The responses of the LPCC filter to one of the training 
images and to noise are depicted in Fig. 2. The signal-to-noise ratio at the output of the filter  
 
      SNR = !d K"

2     (6) 
 
where σ2 is the variance of the noise, λ is a factor that depends on the cross-correlation between 
training images, d is the size of (number of pixels in) the training images, and K is the number of 
training images stored in the filter [6].  



     
 

Fig. 2 Graphical depiction of LPCC filter response to a training image (left) and noise (right) 
 
3. Application Of LPCCFs To Image Indexing And Retrieval 
 
We group images in the database into segments and use LPCC filters to encode and represent all 
of the images within a segment in a single filter. LPCC filters are also used to encode multiple 
images in a query as is done in object detection. Fig. 3 provides an overview of the image 
indexing and retrieval process. The database is partitioned into segments and phase-encoded off 
line. The p-th segment of the database consisting of images hp,1 through hp,K are phase encoded 
and stored in the frequency domain as FW(p). At run time, a query is constructed, phase encoded 
if more than one image is involved, and correlated against the P phase encoded database 
segments. The output of the matching process consists of P correlation surfaces. The retrieval 
algorithm first identifies those segments that are likely to contain images that match the query 
based on the magnitude of the correlation, and then identifies specific images within the segment 
using the phase. The following sub-sections describe the phase encoding, complex correlation, 
and image retrieval processes in greater detail. 
 

 
 

Fig. 3 Overview of the image indexing and retrieval process 



 
3.1  Phase Encoding 
 
Hassebrook et al edge enhance and normalize the energy of the images prior to phase encoding 
[6]. Instead of edge enhancing we whiten the images to maximize the SNR. For efficiency, 
correlation is performed in the frequency domain using FFTs. Phase encoding is performed first, 
followed by transformation to the frequency domain where whitening is performed before 
filtering. As shown below, this sequence of operations is equivalent to whitening, phase encoding, 
and transforming provided that the whitening operation W is linear. For database images {hk} 
within a particular segment : 
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Whitening is performed by setting the magnitude of the DFT to a constant without altering the 
phase [8]. It is noted that since this is a non-linear operation, Eq. 7 is not strictly valid. Queries 
are encoded in a similar manner. Those containing multiple images {gm} are encoded by two sets 
of linear phase coefficients and stored as EW,± where 
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3.2  Complex Correlation 
 
Complex correlation is performed in the frequency domain: 
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where * denotes correlation. The location of the correlation peak, magnitude squared of the 
correlation peak, and phase of the correlation peak are obtained from the correlation surface: 
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In object recognition, the position of the correlation peak locates possible object instances in the 
image. Here we are more interested in the magnitude of the correlation peak and the phase at the 
peak location.  
 
3.3  Image Retrieval 
 
Initially the magnitude of the correlation peak is used to rank order the segments; i.e., those with 
large correlation peak values are more likely to contain images that match the query than those 
with lower values. Having identified the segments of the database most likely to contain images 
of interest, the phase is used to identify specific images within the segment. If the query contains 
a single image, the phase obtained from z+ is used as an estimate of the image index 
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For queries that contain multiple images, the image index is estimated from the phases of z+ and 
z- at the peak location: 
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The ambiguity of K/2 results from the averaging of the phase angles as shown in the appendix. 
 
4. Experimental Results 
 
Images from a 30 minute segment of CNN's Headline News were used to evaluate our method. 
One video frame every 10 seconds was captured (163 frames total). The frames were then 
reduced to 260x180 pixel images. Thumbnails of all 163 frames are shown in Fig. 4.  
 



 
 

Fig. 4 Image database derived from CNN Headline News broadcast 
 

 
4.1 Comparison Of Implementations 
 
First we constructed an LPCC filter from the first 20 frames of the video by our implementation 
(Eq. 7). As a test, a query image (16x16 pixels) was extracted from frame 2 (Fig. 5a) and 
correlated with the filter. The position of the correlation peak was at the location of the query 
object. The phase at the peak location was 13¡ which is close to the true value of the encode phase 
for frame 2, 360¡ x 2/20 = 18¡.  
 



Next, we repeated the experiment using an LPCC filter implemented by edge enhancing and 
normalizing the database images prior to phase encoding as described by Hassebrook et al. The 
position of the correlation peak was again at the location of the query object. The measured phase 
was 16¡, slightly closer to the true value. 
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Fig. 5 Queries used in image retrieval experiments 
 
 
We then partitioned the database into 8 segments of 20 images each, phase encoded each segment 
using both LPCC filter implementations and correlated the query image with the two sets of 
LPCC filters. The peak response and rank of the segments based on the peak responses for 
Hassebrook's implementation were: 
 

1-20 21-40 41-60 61-80 81-100 101-120 121-140 141-163 
 

3022 
(6) 

3304 
(5) 

6037 
(3) 

4066 
(4) 

6999 
(1) 

2423 
(8) 

6170 
(2) 

2781 
(7) 

 
The segment containing the query was ranked sixth. The same results using our LPCC filter 
implementation were: 
 

1-20 21-40 41-60 61-80 81-100 101-120 121-140 141-163 
 

7327 
(2) 

6510 
(3) 

12348 
(1) 

6443 
(4) 

5857 
(6) 

4666 
(8) 

6259 
(5) 

5203 
(7) 

 



with the segment containing the query ranked second. We found that the Headline News logo in 
the lower right corner of frames 57-60 in segment 41-60 correlated strongly with the query. The 
position of the frames within the segment were then changed so that their encoded phases were 
90¡ apart. After redistributing these frames, the peak value for the segment decreased from 12348 
to 5382. In the resultant ranking, segment 1-20 was ranked the highest as shown below. 
 

1-20 21-40 41-60 61-80 81-100 101-120 121-140 141-163 
 

7327 
(1) 

6510 
(2) 

5382 
(6) 

6443 
(3) 

5857 
(5) 

4666 
(8) 

6259 
(4) 

5203 
(7) 

 
 
4.2 Performance For Different Segment Sizes 
 
The performance of our LPCC filter implementation was then evaluated over the database for 
segment sizes of 20, 40, 80, and 163 images per segment. In these experiments a larger query 
60x40 pixels in size was used  (Fig. 5b.) This pattern was present in frames 91 and 112 in the 
same location. The results for 8 segments containing 20 images were: 
 

1-20 21-40 41-60 61-80 81-100 101-120 121-140 141-163 
 

4046 
(8) 

6495 
(4) 

8116 
(3) 

4794 
(6) 

8609 
(2) 

10782 
(1) 

5880 
(5) 

4713 
(7) 

 
Segments 81-100 and 101-120 were ranked the highest. The measured phases for these two 
segments, 182¡ and 190¡, are close to the true phases for frames 91 and 112, 360¡ x (91-80)/20 = 
180¡ and 360¡ x (112-101)/20 = 198¡, respectively. 
 
The experiment was repeated for 4 segments containing 40 images each. The results show 
segment 81-120 which contains both frames 91 and 112 had the lowest score: 
 

1-40 41-80 81-120 121-163 
 

4713 
(3) 

5345 
(1) 

4068 
(4) 

5241 
(2) 

 
Since the phases assigned to frames 91 and 112 in segment 81-120 were almost 180¡ apart and 
both matched the query image in the same place, the individual responses canceled. The net 
response was thus the lowest. After removing frame 91 from the database and recoding, the 
resultant responses were 
 

1-40 41-80 81-120 121-163 
 

4713 
(4) 

5345 
(2) 

6519 
(1) 

5241 
(3) 



 
The measured phase for segment 81-120 was 263¡ which is close to the true phase of frame 112 
(frame 91 eliminated), 360¡ x (112-81-1)/(40-1) = 277¡. 
 
We then constructed LPCC filters for segments 1-80 and 81-163 (frame 91 was put back into the 
database). The responses were 3906 and 6903, respectively. The measured phase for segment 81-
163 was 84¡ which was close to the average of the true phases of frames 91 and 112, 88.5¡. When 
two matches occur in the same place, the estimated index lies in between the true image indices.  
 
Finally all 163 images were encoded in a single LPCC filter. The correlation peak occurred at the 
correct location with a measured phase of 216¡. The actual phases of frames 91 and 112 were 
200¡ and 247¡, their average was 224¡. 
 
4.3 Queries Containing Multiple Images 
 
In this last set of experiments we evaluated the performance of the method for queries containing 
multiple images. The database was partitioned into 8 segments of 20 images each. Four facial 
images (95x120 pixels) at locations (206,246), (259,229), (327,237) and (334,236) from frames 9, 
59, 112, and 162 (Fig. 5c) were phase encoded and stored in a LPCC filter which was correlated 
against the 8 LPCC filters corresponding to segments 1-20, 21-40, etc. The results below 
summarize the peak value of the response as before for all segments 
 

1-20 21-40 41-60 61-80 81-100 101-120 121-140 141-163 
 

4624 @ 
(206,246) 
φ+ = 331¡ 
φ- = 274¡ 
φk =  
122¡, 
302¡ 
(144¡) 

3623 4439 @ 
(259,229) 
φ+ = 238¡ 
φ- = 65¡ 
φk =  
151¡, 
331¡ 
(324¡) 

3512 3815 4618 @ 
(327,237) 
φ+ = 34¡ 
φ- = 7¡ 
φk =  
20¡, 200¡ 
(198¡) 

3525 5732 @ 
(334,236) 
φ+ = 44¡ 
φ- = 213¡ 
φk =  
128¡, 
308¡ 
(328¡) 

 
 
For the four segments containing one of the query images we also show the location of the peak 
response, the phases measured from the z+ and z- correlation surfaces, and the estimated phases, 
and the actual encoded phase of the image in the database matching the query at that location. All 
segments matching the query image were correctly identified and the phase estimated to within 
13¡ of the true phase on average (±180¡). 
 
5. Conclusion 
 
The results from the experiments suggest that phase information can be used to index and retrieve 
multiple images in a database in parallel, and that large numbers of operations can be performed 



simultaneously using a complex number representation. In one experiment 163 real correlations 
were effectively performed by a single complex correlation.  
 
We found that the method is not without problems however. Objects of interest that occur in the 
same location in different images in the database will not be found if the corresponding images 
are assigned phases 180¡ apart. If the assigned phases are not 180¡ and if the correlation is large 
enough, the measured phase at the peak location will lie in between the assigned phases. We also 
found patterns that only weakly correlate with the query may strongly correlate and produce false 
positives if they occur in the same location and are assigned similar phases. Many of these 
problems are particularly relevant for video as we have seen but may be less of a problem for 
digitized photography.  
 
Although we have shown that it is possible to match queries containing multiple images against 
segments containing multiple images, there is an ambiguity of 180¡ in the measured phase. In 
these cases it will thus take twice as long to find the correct image within a segment since, on 
average, twice as many images will need to be retrieved. 
 
In cases where more than one image in a query match images in a segment, multiple peaks in the 
correlation surface must be examined. The phase at each peak location ±180¡ is used to locate 
candidate images within the segment that match one of the query images. This is an area of future 
work. 
 
As shown previously in target detection, LPCC filters demonstrate the feasibility of matching a 
large number of representative views of the object of interest to images. Similar approaches may 
thus be appropriate in certain types of image retrieval problems that involve the recognition of 
particular faces, icons (e.g., to detect key frames), and particular kinds of textured patterns. 
 
Appendix - Estimating phase when queries contain multiple 
images 
 
When matching multiple images in a query to multiple images in a database the measured phase 
depends on the encoded phases of the query and database images. The phase at the peak location 
derived from the z+ correlation surface 
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where φk and φm are the encoded phases of the k-th database image and the m-th query image. 
Correlating the phase encoded data with the conjugate phase encoded query produces the z- 
correlation surface where the phase at the peak location is 
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As shown in Fig. A-1, φk is equal to the average phase angle ±180¡ 
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Fig. A-1 Geometry for phase estimation 
 

 
By subtracting the measured phases and dividing by two,  
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we can determine which image in the query (modulo M) matched the database. 
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