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A new algorithm to assist in the analysis of data sets of very
high dimensionality (from 10 to over 1000 dimensions) is de-
scribed. The algorithm is based on a nonlinear mapping (NLM)
algorithm developed by Sammon which maps a configuration of
points in one space to a configuration in another such that the
distances between points in the two spaces are approximately pre-
served. Sammon’s algorithm is initially used to analyze multidi-
mensional data from a brain mapping experiment. Because the
complexity of his algorithm grows quadratically with the number
of points, it is limited to relatively small data sets. An extended
NLM algorithm is then described that is capable of handling large
data sets (e.g., images) by using a multidimensional interpolation
approach. A method for interpreting hyperspectral imagery data
based on this extended algorithm is illustrated. Finally, the analy-
sis of the structure and content of a collection of text documents
using NLM is considered that involves the use of alternative dis-
tance measures and binary vectors of extremely high dimensional-
ity (>>1000). © 1994 Academic Press, Inc.

1. INTRODUCTION

We experience the world in three spatial dimensions
plus time. However, in a number of scientific visualiza-
tion and pattern recognition applications, data sets in-
volving hundreds and perhaps thousands of dimensions
are involved. In the pattern recognition community, lin-
ear and nonlinear transformations have been used to map
multidimensional data into fewer dimensions for display
and analysis (Andrews 1972). Meanwhile, scientific data
visualization techniques have been developed to augment
conventional spatial representations with icons and tex-
ture (Grinstein and Smith 1990), color and motion (Young
and Rheingans 1990), sound (Coughran and Grosse 1990),
and other perceptual modalities.

This paper explores the use of nonlinear mapping tech-
niques in conjunction with conventional 2-D graphical
representations for visualizing feature spaces of very
high dimensionality, from tens to thousands of dimen-
sions. As an example, consider two hyperspherical distri-
butions in a five-dimensional space: (a) one hypersphere
inside another, and (b) two hyperspheres separated in
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space. In Fig. 1 the two sets of points have been mapped
into two-space using a nonlinear transformation. Even
though the data are five-dimensional, the inherent two-
dimensional structure of the configurations are apparent.

Our approach is based on the nonlinear mapping
(NLM) algorithm developed by Sammon (1969) which
transforms N-dimensional data into M-dimensional
spaces. Sammon’s algorithm maps a configuration of
points from one space to another so that the differences
in distance between all pairs of points in the two spaces
are minimized. The effectiveness of the algorithm in at-
tempting to preserve local and global relationships in
multivariate data has been demonstrated extensively in
the literature. Unfortunately, the complexity of the algo-
rithm is quadratic in the number of points O(K?) and it is
thus impractical for large data sets.

After other related nonlinear techniques are briefly
summarized in Section 2, the key elements of Sammon’s
algorithm are reviewed in Section 3. A case study illus-
trating the use of NLM in visualizing the relationships
between cross-sectional measurements derived from dig-
itized brain slices is presented in Section 4. In Section 3,
we then describe an extended NLM algorithm that in-
volves mapping a subset (K’ < K) of points using Sam-
mon’s original algorithm and interpolating the remaining
(K — K') points. The resultant complexity is almost lin-
ear in K for (K’ < K) but is not limited to two dimensions
as are previous algorithms. A second case study illustrat-
ing the use of our extended NLM for interpreting hyper-
spectral imagery data is presented in Section 6. In Sec-
tion 7 alternative distance measures are explored in a
third case study involving the visualization of text data-
bases where texts are represented by binary vectors in
excess of 1000 dimensions.

2. PREVIOUS WORK

Shepard (1962a, b) considered an early nonlinear map-
ping problem that involved determining the multidimen-
sional structure of results from psychological experi-
ments. Observations were based on a subjective ranking
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FIG. 1. Five-dimensional hyperspherical distributions.

of stimuli. Subjects were asked to rank the similarity be-
tween facial expressions, colors, and other perceptual
stimuli (e.g., Face A is more like Face B than Face C,
etc.). Shepard’s approach was based on the concept of
multidimensional scaling (Shepard 1962a, b). Initially K
points, each representing an observation, are placed at
the vertices of a regular simplex in a space of K — 1
dimensions (e.g., for K = 3 observations, three points are
placed at the vertices of an equilateral triangle in 2-
space). Next the points are moved in such a way as to
reduce the dimensionality of the configuration while pre-
serving the ordering relations between the corresponding
stimuli. Earlier, Hammersley (1950) had observed that
for points distributed within a hypersphere of fixed ra-
dius, as the number of dimensions is increased the vari-
ance of the interpoint distance approaches zero. Shepard
therefore reasoned that it should be possible to reduce
the dimensionality of a configuration by increasing the
variance of the interpoint distances. This was done by
increasing the distance between points that are far apart
and decreasing the distance between points that are close
together.

Bennett (1969) later applied the same approach to esti-
mate the intrinsic dimensionality of a collection of signals
where each signal is represented by a point in N-space.
Bennett’s algorithm increases the variance of the configu-
ration as was done above but only preserves the ranking
between neighboring points in the configuration where
the size of the neighborhood is a parameter. The intrinsic
dimensionality was then determined by the method of
principal components. :

In the above algorithms, the dimensionality of the out-
put space depends on the intrinsic dimensionality of the
data. Sammon (1969) developed an algorithm for map-
ping points into output spaces of arbitrary dimensional-
ity. The mapping is accomplished iteratively and at-
tempts to preserve the distances between all points in the
configuration. Although the effectiveness of his NLLM al-
gorithm has been demonstrated extensively in the litera-
ture, the complexity of the algorithm is quadratic in the
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number of points O(K?) and is thus impractical for large
data sets.

Alternatives to and extensions of NLM which reduce
computation by preserving fewer interpoint distances
(e.g., between nearest neighbors and one global reference
point only) and/or by restricting the mapping to two di-
mensions (e.g., by triangulation) have been developed.
Chang and Lee (1973) developed a modified NLM for
mapping points into a plane which reduces computation
by preserving fewer interpoint distances. l.ee et al.
(1977) describe a sequential O(K) triangulation algorithm
that maps points into 2-space preserving only (2K — 3)
distances. Biswas et al. (1981) describe a method that
combines Sammon’s algorithm with that of Lee’s. In Sec-
tion 5, we describe an extension of NLM that involves
mapping a subset (K' < K) of points using Sammon'’s
original algorithm and interpolating the remaining (K —
K’) points. The resultant complexity is almost linear for
(K' < K) but is not limited to two dimensions as are the
above algorithms.

Kohonen’s topology-preserving mapping (e.g., Ko-
honen 1988) is another method for mapping multidimen-
sional data into spaces of given dimensionality. It is
based on an array of P locally interconnected processing
units, where M is the dimensionality of the array. The
input consists of a set of K vectors, x,. The weight vector
of the pth unit at time ¢ is w,(¢). Input and weight vectors
are N-dimensional. After the weight vectors are ran-
domly initialized, for each input vector the closest weight
vector is determined, and its value, along with those of
neighboring units, is updated iteratively:

w,(t + 1) = w,(t) + alx, — w,(D].

The array ‘‘self-organizes’ in the sense that x; vectors
that are close to one another in N-space map to nearby
processing units. A disadvantage of Kohonen’s approach
is that the computational complexity is on the order of
the number of processing units, which may be much
greater than the number of points to be mapped.

3. NONLINEAR MAPPING ALGORITHM

Given a configuration of points in ®», Sammon’s algo-
rithm computes a configuration of points in & such that
the distances between points are approximately pre-
served. Let x; = {xx,} be the position of the kth point in
N-space and let y, = { y4.} be its position in M-space. The
distances between points in the two spaces are v; =
Ix; — x;|| and w; = |ly: — y;l, respectively, where || || is the
Euclidean norm. The mapping error is a measure of how
well a configuration of points in M-space matches the
original configuration in N-space in terms of the differ-
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The mapping error is minimized iteratively by adjusting
the KM variables { yi,} with a gradient descent proce-
dure,

AE(D)
aykm (t) ’

Vit + 1) = Yiu() — ctpm(2)

where ay,,(#) is a variable gain term that controls the rate
of convergence. Sammon uses

*E()
aykm (t)z

aim(t) = ag

H

with 0.3 < ¢ < 0.4 found empirically to lead to satisfac-
tory convergence. The mapping error is recomputed at
each iteration and is a function of the original distances in
N-space {v;} and the computed distances {u;} in M-
space. Since there are K(K — 1)/2 unique distances in-
volved the algorithm requires on the order of K? opera-
tions per iteration.

Although there is no restriction on the dimensionality
of the output space we use M = 2 here for convenience.
To illustrate the behavior of this algorithm consider first
mapping the vertices of a square (N = 2). The four points
in R% are {x,} = (0 0), (0 1), (1 0), (11). Two solutions are
shown in Fig. 2 after 20 iterations. The first configuration
is the correct solution (E = 0); the other solution occurs
for a different initialization because the algorithm gets
trapped in local minimum (E = 0.069). The four vertices
are marked 0-3; the lines are drawn for reference. In
three dimensions, one can only approximately map the
vertices of a cube (0-7) into a 2-D map. Two solutions
after 50 iterations each are shown in Fig. 3 (E = 0.062).

As pointed out by Bennett (1969) the intrinsic dimen-
sionality of a collection of signals (configuration of points
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FIG. 2. Two mappings of the vertices of a square.
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FIG. 3.

Two mappings of the vertices of a cube.

in N-space) depends only on the signals and not on the
space itself. For example, consider a kind of random
walk in a 10-D space where one takes a unit step forward
in a random direction. The 2-D map of a 20 step ‘‘random
walk’’ (50 iterations) resembles a Peano curve (Fig. 4).

In general, as the number of dimensions increases, the
mapping error increases, as the interpoint distances can
be only approximately preserved. Nevertheless, as we
demonstrate in the remainder of the paper, the resultant
mappings can still provide a great deal of insight into the
global and local structure of the data.

4. CASE STUDY: BRAIN MAPPING

Several standard data sets have been used in the litera-
ture to demonstrate NLM and related algorithms. Here
we present an initial case study illustrating the utility of
NLM in an on-going effort to map the major cellular
areas of the brain (Armstrong et al., 1991).

Standard maps which divide the brain up into cytoar-
chitectonical areas based on structural features such as
the size and orientation of cells, the thickness of individ-
ual layers of cells, and the homogeneity of cells within a
layer have been in use for almost a century. These maps,
originally developed by Brodmann (Damasio and Dama-
sio 1989), have been the standard used by neuroanato-
mists for comparing brains and are often used as a guide
for interpreting imagery such as that collected by NMI
and PET scanners.

Our goal is to develop texture signatures of the major
cellular regions of the brain areas in order to assess quan-

FIG. 4. Random walk in 10-dimensional space.
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FIG. 5.

titative differences between individuals. We are currently
examining differences in the posterior cingulate gyrus
(Fig. 5), which is a part of the limbic system responsible
for attentional mechanisms and emotions. NLM is used
to visualize the relationship between texture measure-
ments for different parts of the brain.

Our texture measurement is simply the cross-sectional
optical density profile normal to the surface of the cor-
tex.! Because of the complex structure of folds (gyri and
sulci) we first identify those regions in the digitized image
where the slice is normal to the surface of the brain. Next
the brain is ‘‘straightened’’ by computing the medial axis
of the cortex in these regions and resampling the optical
densities along profiles perpendicular to the medial axis.
A section of the cortex in Fig. 5 after it has been straight-

' The data are digitized sections of actual brains that have been
sliced, mounted on glass slides, and stained to define cellular structures.

Image of a portion of the posterior cingulate gyrus.

ened is shown in Fig. 6a. The image has also been propor-
tionally scaled perpendicular to the medial axis. The
straightened image is smoothed and sub-sampled to pro-
duce a series of vectors through the cortex at fixed inter-
vals (Fig. 6b).

An initial experiment (Armstrong ez al., 1991) was per-
formed to attempt to (1) identify representative vectors
(signatures) by clustering, (2) associate each of these vec-
tors with one of the Brodmann regions, and (3) classify
the remaining vectors.

A series of 32, 32-element vectors were extracted from
each slice of the straightened image in Fig. 6b. An itera-
tive clustering procedure was used to find representative
vectors or clusters. The procedure consisted of finding
the two closest vectors (in 32-space), randomly eliminat-
ing one of the vectors, and repeating until only one vector
was left. A heuristic based on the principle of minimum
description length was used to find the optimal number of
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FIG. 6. Straightened and proportionally rescaled image (left) showing slice and region numbers (right).

clusters. At each step, an objective function proportional
to the number of vectors remaining (i.e., the number of
clusters) and the total error in approximating all 32 vec-
tors by the clusters was computed. The minimum value
of the objective function was used to find the best cluster-
ing. This occurred for four vectors corresponding to
slices 0, 9, 18, and 25. One of four Brodmann regions (23,
29, 30, and 31) was then assigned, by a neuroanatomist,

to each cluster. The remaining clusters were classified
into one of the Brodmann regions using a minimum
Euclidean distance classifier. The final assignment of
Brodmann regions to slices is shown in Fig. 6b.

The results are depicted in a 2-D map (Fig. 7) obtained
by mapping the set of 32, 32-D vectors using the NLM
algorithm. The vectors extracted from each slice are
shown in (a), the clusters in (b), and the classification
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FIG.7. Two-dimensional map and classification results. Numbers 0-31 refer to the position along the cortex. (a) Two-dimensional map of brain

data; (b) clusters; (c) classification results.

results in (¢). The decision regions in (c) were hand
drawn based on the classification results. With a few ex-
ceptions the points tend to follow a 1-D trajectory in the
2-d map with distinct transitions between cellular regions
(5-6 transition between regions 29 and 30, 13—14 transi-
tion between regions 30 and 23, and 22-23 transition be-
tween regions 23 and 31). We have noted similar trajecto-
ries in other brain slices analyzed and are currently
attempting to develop image normalization techniques
based on these results for matching textures between
brains for classification.

5. EXTENDED NONLINEAR MAPPING ALGORITHM

As noted earlier the main limitation of the basic NLM
algorithm is that the computation grows quadratically
with the number of points. This section describes an ex-

tension to NLM based on mapping a subset of points
using Sammon’s original algorithm and mapping the re-
maining points by multidimensional interpolation.

Recall that {x;: k = 1,2, . . ., K}is the original set of
points in N-space, and {y,: k= 1,2,. . ., K}is the set of
points in M-space computed by NLM. Letz=x @y =
[x1x2+ - “xyy1y2: * ~yu]beapointin RV je., inthe
space formed by adjoining ®Y and ®RM. It can be shown
(Carlotto and Izraelevitz 1989) that a new point y* in R
can be computed as a function of a new point x* € ®Y
and {z;: £k = 1, 2, . . ., K} by weighting the y, by an
amount inversely related to the distance between x* and
the corresponding x;; e.g.,

2 Vi dx E yi exp — [x¢ — x*]7[x;, — x*]/20?
_ Kk _ kK

>, a
P

y*

K

Sexp — [x — x*]1[x; — x*]/20°2
k
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TABLE 1
Correlation Decreases as Point Moves outside of
Original Data Space

Wo w W, Uo Uy u Yo Y1 P
0.5 0.5 0 0.5 0.5 0 0.58 0.52 1
0.5 0.5 0.5 0.5 0.5 0 0.58 0.52 0
0.5 0.5 1.0 0.5 0.5 0 0.58 0.52 -1

FIG. 8.

Interpolation of new points may not be unique.

where o is a parameter that controls the amount of
smoothing. For small ¢ the output y* jumps to the value
of the nearest neighbor y,; at the other extreme as o
increases, y* approaches the average of the y,. The
smoothing factor is automatically determined using a
leave-one-out procedure described in (Carlotto and
Izraelevitz 1989).

A problem not previously identified with earlier ap-
proaches that are based on mapping new points by way of
a smaller set of reference points (e.g., Biswas ez al., 1981)
is that in certain cases the mapping may not be unique. In
particular, consider the case where a new point w* is
outside of the space spanned by the {x,}, as depicted in
Fig. 8. Let wq be its distance in the orthogonal subspace.
The weights a, are given by

1 X
exp = 533 (* = w0 + w3
W2 al (xn* - X n)2
= exp — |50 T exp — |3,

The orthogonal term appears in the numerator and de-
nominator and so cancels. The response to w* thus can-
not be distinguished from that of x* (Fig. 8). Determining
when such cases occur can be accomplished by feeding
back y* and using it to compute an estimate u* of w*. As

(1,0,0)

+

+
1,1,0

(0,1,0)

FIG. 9. Two-dimensional map for original three reference points +
and new points #.

w* moves outside the original data space, the distance wy
increases, and the correlation between w* and u* de-
creases. In practice, if the correlation falls below an es-
tablished threshold, one may decide not to map the point,
as the result may be misleading. The correlation may also
be used to detect outliers or anomalies in the data.

To illustrate this phenomenon, consider three points
located at (1 00), (1 10), and (0 10). A 2-D mapping of
those points is shown in Fig. 9. Three new points, (.5 .5
0), (.5.5.5), and (.5 .5 1), were then mapped as described
above. The results are summarized in Table 1 where the
new points w* = (wp w; wy), interpolated coordinates
y* = (yo y1), back interpolated points u* = (uy u; u;), and
p is the normalized correlation coefficient. All three w*
are mapped to the same y* (denoted # in the 2-D map).
The decreasing correlation for the last two points indi-
cates that they are increasingly outside the original data
space and thus cannot be uniquely interpolated.

6. CASE STUDY: HYPERSPECTRAL DATA ANALYSIS

Imaging spectrometers and hyperspectral imagery are
becoming increasing important in geological and environ-
mental remote sensing (Goetz et al., 1985). The narrow
spectral bandwidth of these sensors permits the accurate
classification of minerals, the identification of chemical
plumes, and the detection of stressed vegetation to name
just a few applications. A color image is composed of
three components or bands: red, green, and blue. A hy-
perspectral image consists of hundreds of bands where
each band is an image collected over a very narrow spec-
tral range AN ~ 10 nm. Because of the large number of
bands, one can think of hyperspectral imagery as a data
volume (x, y, \) or as an image of vectors as shown in
Fig. 10.

The interpretation of hyperspectral imagery generally
involves comparing spectral signatures of unknown ma-
terials to those of known materials (e.g., from a spectral
signature library or previously identified within the im-
age). We have explored the use of the extended NLM
algorithm to compute material maps from a set of refer-
ence spectra of known surface materials. These material
maps provide a context for identifying unknown mate-
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FIG. 10. AVIRIS data set (Drum Mountain, Utah).
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FIG. 13. Two-dimensional maps for hyperspectral visualization: (a) full data set mapped by NLM algorithm; (b) selected samples mapped by

NLM algorithm; (c) interpolated results for full data set.

rials in the image. The concept is illustrated conceptually
in Fig. 11. A reference map is initially computed for a set
of spectra of known materials using the conventional
NLM algorithm. The map assigns each material to a point
in space. As the imagery analyst moves a cursor to differ-
ent points in the image, the spectral vector at each point
is mapped into the 2-D map by interpolation, using the
extended NLM algorithm described in the previous sec-
tion. The material properties at a given point in the image
can be assessed by comparing its position in the 2-D map
to that of known materials. For example, if an image
point falls in between two reference spectra it is likely
that the material in the image is a mixture of the corre-
sponding materials; if the correlation falls below a speci-
fied threshold, the spectrum may correspond to a new
material not in the reference library. In principle, the
entire image can be systematically mapped by this pro-
cess.

An experiment was performed using the first 90 bands

of NASA’s AVIRIS sensor over Drum Mountain, Utah.
Three samples from five surface categories were identi-
fied in the image by a geologist: extrusives (0, 1, 2), intru-
sives (3, 4, 5), sand/playa (6, 7, 8), alluvium (9, 10, 11),
and quartzite (12, 13, 14). Selected signatures are plotted
in Fig. 12. Fig. 13 summarizes the results from the first
part of the experiment. First we mapped all 15 samples
using NLM (a). Next, one sample from each of the cate-
gories was mapped (b) and used to interpolate the re-
maining 10 samples by the extended NLM (c). Samples
of similar materials appear near one another both in (a)
and in (¢) as expected. In the second part of the experi-
ment, we mapped samples 0, 3, and 9 (extrusives, intru-
sives, and alluvium only), and attempted to interpolate
values for samples 1, 4, 10, 7, and 13 (the last two being
sand/playa and quartzite). The computed correlation val-
ues were 0.9, 0.84, 0.83, 0.48, and 0.57, respectively. The
correlation of the last two materials not in the reference
map were significantly lower, as expected.
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7. CASE STUDY: TEXT VISUALIZATION

Advances in document retrieval systems and network-
based information services are providing increased ac-
cess to large distributed text databases. The focus to date
has been on the development of document retrieval and
natural language understanding systems (e.g., Salton
1986, Stanfill and Kahle 1986, and Jacobs and Rau 1990)
which are designed to retrieve and, to a limited extent,
understand freetext pertaining to particular topics of in-
terest. Less attention has been devoted to text visualiza-
tion, e.g., for clustering and visualizing the contents of an
entire database of freetext.

This final case study describes a graphical approach for
visually summarizing text databases which uses NLM to
map texts to points in a 2-D space. The approach is based
on converting texts to binary N-vectors known as surro-
gate codes. The method, which is similar to hashing,
converts words into random P-bit codes which are stored
in a dictionary (Knuth 1973). Each code is a list of P
integers (bit positions) selected at random between 0 and
N — 1. A word is encoded by setting its P bit positions to
1 in the binary N-vector. The surrogate code for a piece
of text is thus computed by simply “‘or-ing’’ together the
codes for each word in the text. The performance of the
surrogate coding method depends on the size of the vec-
tor N, the number of code bits P per word, and the num-
ber of words R encoded per text (Stanfill and Kahle
1986).

We restrict ourselves to 2-D maps (M = 2) here for
convenience but are exploring volumetric (3-D) rendering
on high-end graphics workstations at present. By map-
ping surrogate codes to points in a 2-D map, we expect
that texts which deal with similar subject matter will tend
to cluster. The assumption is that if the texts are long
enough, similar texts will tend to have more words in
common than those that are dissimilar. The similarity
between texts is measured by correlating the correspond-
ing binary vectors. For two texts, A and B, the correla-
tion between their corresponding surrogate codes a and b
is C(a, b) = 3a,b,. The correlation is roughly propor-
tional to the number of words common to the two texts.

The text encoding and mapping process may be sum-
marized as follows.

Build Word Frequency Table. Over all text files a ta-
ble F = {f;} is computed that lists for each unique word
that is encountered the number of text files in which it
appears. For K text files, the frequency of the ith word f;
is0<f =K.

Encode Text. For each text file, the words within it
are sorted in terms of their frequencies in the previous
table. It has been observed that words that occur neither
too frequently nor too infrequently tend to contain most
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of the content of the text (Salton 1975). Here we elimi-
nate words that occur in only one text (f; = 1) since they
do not contribute to the clustering, and sort the remaining
words in order of increasing frequency. The first R words
are selected and encoded as described earlier.

Compute Distance Table. First the K(K — 1)/2
unique correlations between all pairs of text vectors are
computed. Next, the correlations are converted to the
{v;} distances required by the NLM algorithm (Section 3)
according to

D(a’ b) = Cmax - C(a5 b) + g,

where D(a, b) is the distance between texts A and B, Cax
is maximum correlation computed over all texts in the
database, and ¢ is a small positive number that keeps the
mapping error finite.

As an example of the above application, a database of
TASC project summaries was examined. A 2-D map (Fig.
14) was computed using R = 128 words/text file, P = 4
bits/word, and N = 1024 bit vectors. As shown in the
figure, the 2-D text map depicts each project summary as
a point in 2-space (a). For large databases and in regions
of the map where a large number of documents have
clustered (b), a tool is provided to expand selected por-
tions of the map (¢). Documents may be selected with the
mouse from the 2-D map and displayed (d). Finally, the
content of the database can be locally examined by se-
lecting one or more documents (shown underlined) with
the mouse (e) and listing in a separate window (f), in
order of their frequency of occurrence, the words com-
mon to the selected documents. Common words are de-
termined by ‘‘and-ing”’ the surrogate code vectors, and
searching the dictionary for all words whose P bit posi-
tions are set to one in the resultant vector.

8. SUMMARY

Nonlinear mapping techniques for analyzing multidi-
mensional data were described. An application of Sam-
mon’s NLM algorithm for visualizing the relationships
between texture measurements derived from digitized
brain sections in 32 dimensions was initially presented.
An extension to NLM for mapping arbitrarily large data
sets using a novel multidimensional interpolation ap-
proach was then described. Its use in identifying surface
materials in hyperspectral imagery on the basis of their
spectral signatures was demonstrated on an AVIRIS data
set (~100 dimensions). Finally, a text visualization appli-
cation was considered that involved the use of a non-
Euclidean distance measure and binary vectors of ex-
tremely high dimensionality (>1000) for analyzing the
structure and content of databases of freetext.
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FIG. 14.

One area of future work is to combine nonlinear map-
ping techniques for dimensionality reduction with scien-
tific visualization techniques; e.g., to visualize a collec-
tion of text documents in an animated and color-coded
3-space.

In addition to extending Sammon’s original technique
to arbitrarily large data sets, this paper has demonstrated
that NLM can be used to assist in the interpretation of
data sets of very high dimensionality across a wide range
of applications. These results suggest that one can effec-
tively interpret such data and need not suffer Bellman’s
“‘curse of dimensionality”” (Duda and Hart 1973) in the
process.
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