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A new approach to the interpretation of outdoor scenes is de-
scribed. It is based on a context-sensitive classifier which uses
relative constraints to describe global relationships between object
classes. Contextual models represent the structure of a scene’s
underlying feature space in terms of stable, physically based pa-
rameters. A discrete relaxation algorithm is used to find unambig-
vous labelings that satisfy a set of ordering relations between ob-
ject classes. Unlike rule-based systems, these constraints provide a
complete and consistent description of the scene. Scenes that are
similar in structure are organized into contexts, each of which is
represented by a consistent set of constraints. Instead of attempt-
ing to achieve a high degree of specificity and localization within
limited domains, the methodology is geared toward recognizing
general kinds of objects with little or no human intervention over a
wider range of scenes. Several examples which demonstrate the
recognition of simple objects in black-and-white and multispectral
imagery acquired by aircraft, satellite, and at ground level are
presented. Through a series of experiments, the ability of the
system to degrade gracefully in performance when faced with new

and unknown situations is demonstrated. © 1990 Academic Press, Inc.

1. INTRODUCTION

The ability to recognize objects independent of view-
point and illumination has been a major goal in image
understanding research for over 20 years. The greatest
success has been achieved in domains that are highly
structured and amenable to model-based approaches.
(Binford [2] surveys a number of model-based image
analysis systems.) Less success has been achieved in in-
terpreting unstructured domains such as general outdoor
scenes and aerial imagery. The tremendous diversity in
nature makes it difficult if not impossible to account for
every possible situation that can occur and to develop
precise geometrical models or scene invariant descrip-
tions capable of handling the many sources of variability.

Two ways of dealing with diversity and variability are
to partition the domain into distinct kinds of scenes or to
develop general purpose models that will work over a
wide range of situations. Most of the systems that have
been developed to date for understanding outdoor scenes
have followed the former approach, in effect dividing the
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general problem to a series of smaller ones that are more
readily handled by model-based approaches. Zucker et
al. [30] point out that this is not enough; one must de-
velop general purpose models that can deal with unex-
pected situations. The lack of success to date in this area
seems to confirm their point of view.

Fischler and Strat [10] discuss four shortcomings in
current machine vision systems with respect to the prob-
lem of understanding outdoor scenes: the strong reliance
on geometrical information and shape, the ill-defined na-
ture of segmentation, the lack of effective ways to use
contextual information, and the inability to effectively
bound the search space. They suggest as an intermediate
goal the development of a capability for recognizing gen-
eral kinds of objects in natural settings, in a sense, trad-
ing specificity for generality.

A related and important area of research in the remote
sensing community is the development of signature ex-
tension methodologies. As in machine vision systems,
the objective is to develop techniques that will perform
well over a wide range of scenes and imaging conditions.
Initial approaches were based on an attempt to match
clusters in multispectral feature spaces using a multipli-
cative and additive signature correction model [13, 17].
More recently, signature extension techniques have been
developed that use physically-based measurements such
as soil brightness, greenness (biomass), and moisture [14,
7]1. For example, Hall and Budhwar [11] describe recent
developments in using signature-extension techniques for
crop classification based on a plant’s greenness profile in
time.

The objective of the work reported here is to develop a
generalizable approach for interpreting outdoor scenes
taken from above as in remote sensing and reconnais-
sance and from ground level as in autonomous land vehi-
cle applications. Instead of attempting to achieve high
accuracy in specificity and localization within limited do-
mains, the goal is to be able to recognize general objects
with little or no human intervention over a wider range of
scenes. An important requirement is that the perfor-
mance should degrade gracefully outside anticipated op-
erating regimes; i.e., the system must be able to deter-
mine whether an unknown situation has been previously
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encountered and be able to provide a reasonable answer
if it has not.

The remainder of the paper is organized as follows:
Section 2 summarizes a new approach for interpreting
outdoor imagery based on the concept of context-sensi-
tive classification. Section 3 describes the major elements
of the classifier: a discrete relaxation algorithm that uses
constraints between object classes to find unambiguous
assignments of classes to objects (labelings), an efficient
ordering scheme to reduce the search for unambiguous
labelings, a deductive algorithm for deriving constraints
from examples, and conflict resolution and context inter-
polation techniques for handling unknown and unex-
pected situations. Section 4 presents three case studies to
illustrate the potential utility of the context-sensitive
classifier in interpreting black-and-white aerial photogra-
phy, aircraft and satellite multispectral imagery, and
black-and-white ground level photography. Areas for fu-
ture work are discussed in Section 5. A method for deriv-
ing texture and spatial information from black-and-white
imagery is described in the Appendix.

2. OVERVIEW OF APPROACH

Previous techniques for interpreting outdoor scenes
can be divided into model-based approaches which at-
tempt to match structural representations derived from
an image to those corresponding to known objects and
feature-based approaches which compare measurements
derived from an image to those of known objects. The
method presented here is a synthesis of the two ap-
proaches and involves classifying collections of objects
by matching the structure of their underlying feature
spaces.

The structure of a distribution of object classes in a
feature space ® is described by a set of partial orderings,
or constraints, between the object classes; e.g.,

() < 1), ) < ws(dh)), wady) < ws(¢a), and
(d3) > wsi(dhs);

or, to pick a simple example,

TREE(brightness)<GROUND(brightness),
GROUND(brightness)<SKY (brightness),
GROUND(vertical-position)<SKY (vertical-position),
and

TREE(roughness)>SKY(roughness).

These constraints defined three kinds of object, trees,
sky, and ground, in terms of the relative values of three
features, brightness, roughness (texture), and vertical po-
sition.
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Context is the relation of an object to its surroundings,
i.e., to the other objects in the scene. Usually we think of
context in a spatial sense, as relations between objects in
image space. In the above example, object classes are
defined in terms of how their fearures relate to those of
the other object classes. This is a much more general
expression of context as the features may be spectral,
textural, structural, as well as spatial in nature.

A set of constraints that defines a distribution of object
classes in a consistent fashion is known as a context.
Figure 2-1 shows three feature spaces. Since (a) and (b)
describe three objects by the same set of constraints,
namely

(P < wxd)), wAd) < wi3(dy), wi(dr) < ws(dy), and
wi(dr) < wy(dr),

they belong to the same context. A different set of order-
ing relations describes the collection of objects in (c);
therefore, it belongs to a different context. More complex
topological relationships such as containment, adja-
cency, and intersection based on representing the extent
of an object in feature space are under investigation but
are not discussed here.

A collection of objects is classified by a discrete relaxa-
tion labeler that attempts to find unambiguous labelings
which satisfy a given set of constraints by assigning ex-
actly one class to each object. Ideally, if a domain could
be divided into contexts that are mutually exclusive and
complete, exactly one unambiguous labeling would al-
ways be found. When there is overlap between contexts,
multiple labelings can occur and conflict resolution (se-
lecting the best labeling) is required. When the present
situation does not match any known context, context in-
terpolation (synthesizing a plausible labeling) may be
necessary. Conflict resolution and context interpolation
strategies are discussed in Section 3.

The proposed approach differs from previous outdoor
scene understanding efforts in three fundamental ways:
in the use of context, in the representation of object
classes, and in the generation of constraints. Some scene
interpretation systems that use context can be described
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FIG. 2-1. Three feature spaces. A representation of feature spaces

using relative constraints is invariant with respect to distortions of the
form f(¢,), where fis an order-preserving function.
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as context-dependent, i.e., the context must be specified
a priori so that the proper schema or knowledge sources
can be applied to the data [22]. Here, context is seen as a
collective and emergent property of feature spaces so the
system is sensitive to, but not dependent on, context in
the sense that it must be specified explicitly. If all the
contexts are applied to the data being classified only
those that are relevant will match or contribute consis-
tent information. Collections of objects are represented
by a set of mutually consistent constraints which define
partial orderings between objects in terms of a set of
underlying physically based features. This differs from
the use of context sets [10] where context is used only to
enforce consistency between classes during the interpre-
tation process. A number of systems have been devel-
oped for interpreting outdoor scenes that use constraint-
based representations [1, 26] or production systems [19,
21]. Here, classification involves finding unambiguous la-
belings. Moreover, the classifier uses constraints that are
consistent and complete which can be derived automati-
cally from examples through a simple deductive proce-
dure as described in Section 3. It is noted that the pro-
posed method is similar in certain ways to the
representation and matching of pictorial structures devel-
oped by Fischler and Elschlager [9]. Here the compatibil-
ity between hypotheses is treated as a cost function that
is used by the discrete relaxation labeler for prioritizing
the search for unambiguous labelings [4]. Fischler and
Elschlager use a dynamic programming algorithm that
finds low cost solutions. It is shown that unambiguous
labelings do not always have the lowest cost.

Section 3 describes in detail all the major elements of
the context-sensitive classifier. As shown in Fig. 2-2, the
input to the classifier is a set of unlabeled objects that
represent significant modes or clusters in the feature
space. A statistical clustering algorithm is used here to
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segment one or more registered images by decomposing
the corresponding feature space into a mixture of multi-
variate normal components. Depending on the domain
and the sensor, different feature extraction techniques
are required to create a registered set of input images. In
order to recognize surface materials in multispectral im-
agery (Section 4.1), the tasselled cap brightness and
greenness are computed from the reflective bands of the
sensor. In other domains (Sections 4.2 and 4.3) texture
and spatial information must be derived from a single
image. One such method that has been developed for
computing registered representations of image bright-
ness, texture, and spatial information is described in the
Appendix.

3. CONTEXT-SENSITIVE PATTERN CLASSIFICATION

This section describes major elements of the context-
sensitive classifier: a discrete relaxation labeler, an effi-
cient ordering scheme for reducing search, an algorithm
for deriving constraints from examples, and methods for
conflict resolution and context interpolation.

3.1. Discrete Relaxation Labeling

The use of discrete relaxation labeling techniques can
be traced back to Waltz. The problem addressed was that
of interpreting line drawings of 3-D objects using knowl-
edge about the compatibility of line junctions. Feldman
and Yakimovsky [8] developed a semantics-based region
analyzer which segmented and labeled images of simple
scenes. Tenenbaum and Barrow [28] developed an inter-
pretation-guided segmentor similar in concept to the one
above based on Waltz’s filtering ideas. Rosenfeld er al.
[25] formalized the theory of discrete, fuzzy, and proba-
bilistic relaxation methods.

Let A = {a\, ap, . . . , ay} be the set of objects we
wish to classify, Q = {w,, ws, . . . , wg} be the set of
possible labels or classes for the objects, and ® = {4,
b2, . . ., oy} be the set of properties defined over the
set of objects. The value of the mth property of the nth
object is denoted a,(¢,,). Although we do not refer di-
rectly to the numerical values of classes, the notation
wi(pm) > wi(dbn) means that in terms of the mth prop-
erty, the kth class is strictly greater than the k’th class.
The set of hypotheses, H = A X Q = {h,}, represents all
possible pairings of objects and labels; 4, is the hypothe-
sis that object @, is a member of class wy. R =P X O X O
is a set of constraints where r,u € {0, 1}. If wi(d,,) >
wi (b)) then rppe = 1 (true); or if wi(p,) = wp(d,) then
Faie = 0 (false); or if, in terms of ¢,,, there is no ordering
relation between w; and wy, rawe = & (not defined). By
definition, 7, = . As a result there may be at most
MK(K — 1)/2 constraints, although some may be redun-
dant, e.g., rpwe = 1 and rpppr = 1 — rpe = 1. If the two
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classes w, and wy cannot be distinguished from one an-
other in terms of the {¢ .}, Fruw = & for all m.

Let 8[h,, h.i] denote the compatibility of hypotheses
hu and k. Two hypotheses are compatible, i.e., § = 1if

(1) rowe = < for all m, or

(i) n # n' and k = k', since two objects may belong
to the same class, or

(iii) n = n' and k # k, since an object may belong to
more than one class, or

(iv) n=n"and k= k', since a hypothesis is compati-
ble with itself, or

(v) foreach rpu, an) > a,(d,,) since a, is associ-
ated with wy, a, is associated with wy, and r,u requires

that wi(d,) > wp(dnm);

otherwise & = 0. (i) is the case where there are no con-
straints between the classes; (ii) is possible in situations
where the number of objects is greater than the number of
classes; (iil) is possible during the initial phases of the
labeling process (i.e., during Waltz filtering); (iv) is the
trivial case. In (v), if any constraint is violated, then /A,
and A, are not compatible.

A labeling is an assignment of classes to objects. A
consistent labeling consists of all hypotheses 4, that are
compatible with at least one h,x n ¥ n’ and kK # k'. In a
consistent labeling each object may have more than one
label. The process of finding consistent labelings, termed
Waltz filtering, involves repeatedly applying constraints
to hypotheses, eliminating hypotheses which are not
compatible with at least one other hypothesis, until the
process converges. Rosenfeld et al. [25] proved that this
process always converges. An unambiguous labeling as-
signs exactly one class or label per object. If there is more
than one way to do this, multiple unambiguous labelings
may be obtained. If there is no way to do this one can
select, for each object, the class corresponding to the
most compatible hypothesis as is discussed in Section
3.3.

Ultimately, we are interested in finding unambiguous
labelings. Exhaustive search for unambiguous labelings,
e.g., via the tree search procedure developed by Waltz,
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FIG. 3-1. Two distributions of objects in a 2-D feature space.
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FIG. 3-2. Directed graph representation of constraints.

can require the examination of up to KV labelings. Unary
constraints (which involve one object at a time) can, in
conjunction with Waltz filtering, be used to prune large
portions of the search tree by eliminating incompatible
hypotheses at the top of the tree. Here, constraints are
binary (involve two objects at a time) and classes are only
weakly constrained relative to one another. Typically,
there are few incompatible hypotheses and so Waltz fil-
tering is not effective in itself in reducing search.

3.2. Classification Using Relative Constraints

Figure 3-1a shows a distribution of clusters (a, through
as) in a two-dimensional feature space. The clusters rep-
resent a possible segmentation of an image and are de-
fined by two properties: ¢, and ¢,. Initially, we assume
that four classes {w,, w;, w3, w4} are present in the image.
Figure 3-2 is a directed graph representation of these four
classes in terms of only relative constraints. For exam-
ple, the top arc represents the two constraints w4(¢h;) >
w (b)) and w4(d;) > w (wy) (rigy = 1 and ryg, = 1). Figure
3-1a also shows a labeling that satisfies the constraints in
Fig. 3-2. Since it assigns one class per cluster, it is an
unambiguous labeling. Qualitatively, unambiguous label-
ings will be found only if the structure of the feature
space matches the structure defined by the constraints.
The dotted lines in Fig. 3-1a are the decision boundaries
(parallelpipeds in higher dimensional spaces) induced by
the constraints in Fig. 3-2. Their relationships to one an-
other are defined by the constraints, but their numerical
values depend on the data being classified. Relative con-
straints capture the order of the data in each dimension
and are therefore insensitive to distortions of the form
and, + b, where a,, and b,, are unknown constants and
a,, > 0. It is noted that certain signature extension tech-
niques [17, 13] are based on a model of the image forma-
tion process that attempts to account for and correct dif-
ferences between images by additive and multiplicative
factors. Here, such corrections are not necessary.

Figure 3-3 is a search tree for the above example and
contains 4° = 1024 paths, each of which corresponds to a
labeling. The dotted lines in the figure correspond to the
labelings that are eliminated by Waltz filtering. For this
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example, Waltz filtering eliminates 2 out of 20 possible
hypotheses, which given the ordering of the hypotheses,
reduces the number of candidate labelings by 50%.

An even more effective way to reduce search is to
order hypotheses by their mutual incompatibility and to
visit those hypotheses first. The mutual incompatibility
of hypothesis /1, is

Cnk = z

n'#En k' #k

8[hnk; hn'k']'

Table 3-1 lists, for each of the 18 hypotheses /4, which
survived Waltz filtering, a cost that is equal to their mu-
tual incompatibility. If a hypothesis is compatible with
every other hypothesis in H, its cost is zero. In each row,
the most compatible hypothesis (lowest cost) is shown in
boldface. The heuristic is that unambiguous labelings will
" contain low cost hypotheses, and conversely, labelings
consisting of hypotheses with low costs are likely to be
unambiguous. The hypotheses which belong to the unam-
biguous labeling in Fig. 3-1a are marked with asterisks in

TABLE 3-1
Hypothesis Table for Objects in Figure la
Class
Object (4N Wy w3 Wy
a; 0* 8
a 3* 7 8 7
as 7 0% 6 10
a, 8 5 5% 6
as 8 8 5 3=

Note. The most compatible assignments are in boldface.*
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TABLE 3-2
Hypothesis Table for Objects in Figure 3a
Class

Object W) W, w3 w4
a; 1} 9
a 3 8 10 9
a 7 1 8 12
a, 8 6 7 8
as 8 9 7 5
as 8 4 9

Note. No unambiguous labelings exist.

Table 3-1. In this particular example, if the tree is built
such that the most compatible hypotheses are examined
first, the correct labeling is found immediately as it has
the lowest cost.

Consider now a second example. Figure 3-1b shows
the five clusters from the previous example plus a sixth.
If we try to label all six clusters in Fig. 3-1b using the
constraints in Fig. 3-2, no unambiguous labeling exists
(Table 3-2). If a fifth class and four additional constraints
are added, namely, ws(d|) > wid1), ws(d1), wad1), and
wi(¢)), the correct unambiguous labeling is obtained (Ta-
ble 3-3). It is worth noting however that in this example,
the hypotheses which belong to the unambiguous labeling
are not always the ones with the lowest cost. Thus, al-
though searching through the most compatible hypothe-
ses provides a good starting point, some backtracking
may be needed.

3.3. Deducing Constraints from Examples

A mutually consistent and complete set of constraints
can be derived from examples using a simple deductive
procedure motivated by Valiant [29]. Initially, assume
that all 7, = {0, 1} which implies w(¢,) > wi(p,,) and

TABLE 3-3
Hypothesis Table for Objects in Figure 3a with Added
Constraints for ;s

Class

Object w1 ) [OFY Wy wWs
a 0* 9 14 14
a, 6* 11 12 11 1
as 9 3* 9 26 15
a, 12 10 10* 1 7
as 13 14 1 9% 3
ag 14 9 14 0*

Note. The hypotheses in the unambiguous labeling are not always the
most compatible ones.
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wi(Pm) = wplp,) for all k, k', and m. Since rp = ek
only MN(N — 1)/2 constraints are involved. Next, for all
pairs of clusters, a, and a, that belong to classes w, and
wy, respectively, if any a.(¢b,) > a,(¢d,), we eliminate
the 0’ from the corresponding r,u. If any a(¢,) =
ay(¢,), we eliminate the ‘17" from the corresponding
rmkk- This is done for all pairs of classes and for all prop-
erties. At the end, if ru = {0, 1} or is null, there is no
constraint between w; and w; along ¢ ,,. Table 3-4 shows
the earlier example of deriving constraints for the labeled
objects in Fig. 3a. All relevant entries in the table are
initially set to {0, 1}. In (b), the effect of adding the inter-
action of hypotheses h,; and A;3; to the table is seen. (Hy-
potheses Ay and A3, correspond to assigning class w; to
object a, and class w, to object a;.) The final state of the
table is shown in (c).

TABLE 3-4
Deductive Learning of Constraints by Manually Assigning
Labels to Objects

(a) Initial constraint table, ru-
[} [op) w3 Wy

b b2 b ¢ of b b b

@y o
(OB
w, o {0,1}
¢2 {Ovl}
w3 o {0’1} {0,1}
é2 {01} {0.13
Wy ¢I {0:1} {071} {Ovl}
$2 {o.n} {o,1} {01}
(b) Updated with the {h,;, hs;} hypothesis pair
(] (23 3 Wy
[oF b2 oy 2 b o2 b b2
(241 b
¢2
w2 o %]
é2 {1}
w3 o) {0,1} {0»1}
b2 {o,13 0,1
Wy d)[ {031} {0’1} {Ovl}
¢2 {071} {0)1} {031}

(c) Final state after all hypothesis pairs have been accumulated
W w3 w3 Wy

o &2 b b2 ol ¢ b, (o3}

w) o
&2
w2 b, )
é2 {1}
3 b {1} {1}
b, {1} {0}
[oF} o {]} {I} {1}
$2 {1} {0} {0}
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ing (2), and no labeling (3) are shown.

3.4. Conflict Resolution and Context Interpolation

Ideally, if a domain could be divided into contexts that
are mutually exclusive and complete at least one unam-
biguous labeling would always be found for each situation
encountered. (As discussed below, when there are more
objects than classes and the classes are not sufficiently
constrained, multiple unambiguous labelings can occur.)
In reality, more specific contexts may be contained
within less specific ones and the domain may not be com-
pletely covered as depicted in Fig. 3-4. When there is
overlap between contexts, 1.e., when multiple constraint
sets are applied to the data and two or more of the con-
straint sets produce unambiguous labelings, conflict reso-
lution (selecting the best labeling) is required. When the
present situation does not match any known context,
some form of context interpolation (synthesizing a plausi-
ble labeling) may be necessary.

The incompatibility of a labeling C(A) is defined as the
sum of the mutual incompatibilities of the hypotheses
which comprise the labeling, i.e.,

C(A) = 2 an)\nkv

nk

where N\, = 1 if class wy is assigned to object a; and zero
otherwise. Thus C(A) is the total cost of the labeling.
When one set of constraints yields multiple unambiguous
labelings, the one with the lowest cost is selected. It is
shown later in Section 4.1 that the correct labeling is the
unambiguous labeling with the lowest cost.

Conflicts between labelings from different contexts are
resolved by picking the labeling that corresponds to the
most specific situation. More general contexts can be cre-
ated by merging similar classes (e.g., trees and grass into
vegetation). This is desirable from the point of view of
being able to provide some kind of answer when an unex-
pected situation is encountered. However, if more and
less specific contexts are used, together a means for se-
lecting the proper labeling in the event of a conflict is
necessary. Picking the most specific labeling is based on
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the observation that more specific contexts can usually
be reduced to less specific ones by combining classes and
eliminating constraints. For example, the context defined
by the constraints

W) > wi(d), w1(P) > wi(d), wi(d) > ws(¢), and
wy(P) > we)

can be reduced to a more general context by combining
w, and w3 into a new class ws. This generalized context is
defined by the relations

woP) > ws(P), ws(P) > ws(d), and w4P) > wy(eh).

It can be shown that both contexts will produce unambig-
uous labelings. An example that illustrates the conflict
resolution strategy is provided in Section 4.2.

While generalization provides a way of increasing cov-
erage of the domain, there will be new situations where
no unambiguous labeling will be found and one would like
to ‘‘interpolate’” information from relevant contexts. A
problem is how to decide what contexts are relevant. One
approach is to generate a set of tentative labelings (one
for each context) by picking the most compatible hypoth-
esis for each object. These labelings are not globally con-
sistent and so certain objects will be misclassified in each
one. It is argued that if there are enough contexts, the
contexts that are relevant will tend to vote for the same
or, at least similar, classes while those that are irrelevant
will vote for different classes. Therefore a reasonable
strategy is to choose the class with the most votes. An
example is presented in Section 4.2 that illustrates this
idea.

4. EXPERIMENTAL RESULTS

This section presents three case studies that involve
identifying general kinds of objects in imagery. Several
domains are considered: black-and-white aerial photog-
raphy, aircraft and satellite multispectral imagery, and
ground level black-and-white photography.

4.1. Surface Feature Classification Using Texture

The focus in the first case study is on the classification
of general surface features such as trees, shadows, sparse
vegetation, and bare soil in black-and-white imagery. Ini-
tially we are interested in assessing the performance of
the context-sensitive classifier on its training set. A single
image is segmented and clustered into representative ar-
eas based on image brightness and texture. The areas are
hand labeled and used to generate a set of constraints
according to the procedure described in Section 3.3.
These constraints are then used to classify the image.
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Figure 4-1a depicts brightness (BR) and fractal dimen-
sion (FD) images derived from a black-and-white aerial
photograph in red and green, respectively. The FD image
represents a measure of the local roughness that has been
averaged within areas of similar gray-level in the BR im-
age. The algorithms are described in greater detail in the
Appendix. A nonsupervised clustering algorithm [12] is
then used to segment the image pair into disjoint areas
with similar statistics. The algorithm is based on a multi-
variate Gaussian mixture model and is generalization of
an earlier technique that used a scale-space approach for
decomposing a histogram into a collection of normal
modes [3]. Table 4-1 lists the 10 clusters extracted by the
clustering algorithm. A set of constraints was derived by
hand labeling these clusters. The directed graph (digraph)
representation of these constraints is shown in Fig. 4-2.
Trees and bare-soil are rougher than sparse-vegetation
and water, water is darkest, sparse-vegetation is least
rough, and bare-soil is brightest.

By using these constraints to classify the original clus-
ters using the discrete relaxation labeling algorithm, two
unambiguous labelings are obtained (Table 4-1). If two or
more unambiguous labelings are obtained from a given
set of constraints, the most compatible labeling is picked
according to the conflict resolution strategy outlined in
Section 3. The first labeling is the most compatible and
corresponds to the true (hand-labeled) classification. Fig-
ure 4-1b shows the classification image which corre-
sponds to the first labeling. The second labeling was less
compatible, misclassifying a cluster corresponding to
several areas of bare soil with some brush as trees.

4.2. Multispectral Image Classification and
Signature Extension

In this case study, several images over different areas
are examined. The intent is to study the potential utility
of the method for multispectral signature extension, e.g.,
for building thematic maps over large areas without hu-
man supervision. In addition we wish to understand how
the performance of the classifier degrades when unex-
pected situations occur. Both conflict resolution and con-
text interpolation strategies are demonstrated by way of
example.

Two images were initially considered: W1 over subur-
ban Washington, DC, and F2 over rural Arkansas. Both
were acquired by NASA airborne thematic mapper
(ATM) sensors. As shown in Fig. 4-3 (top) the images
appear to be quite different in the visible bands. The tas-
selled-cap brightness (BR) and greenness (GR) images
are shown in Fig. 4-3 (middle) in red and green, respec-
tively. Man-made features, dry soil, and concrete have
relatively high brightness values and appear red; vegeta-
tion is green. For thematic mapper sensors, the bright-
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FIG. 4-1.

Brightness and fractal dimension (texture) images shown
in red and green (top). Classification map (bottom) shows water (black),
trees (bright green), sparse-vegetation (dark green), and bare-soil (red).

ness and greenness are given by [7]

BR = .3037x; + .2793x, + .4743x;3 + .5585x4
+ .5082xs + .1863x;

—.2848x, — .2435x, — .5436x5 + .7243x4
+ .0840xs — .1800x7,

GR =

165

Legend:

BRightness
Fractal Dimension

BARe-soil
SPArse-vegetation
WATer

TREe

FIG. 4-2. Digraph representation of classes in terms of brightness
and fractal dimension.

where the x; are the brightness values of the six reflective
TM bands. Labeled feature spaces for the two scenes are
shown in Fig. 4-4. Radiometrically, there are large differ-
ences between the two scenes. Structurally, the two fea-
ture spaces are quite similar with the exception that
sparse vegetation is greener than trees in W1 while the
opposite is true in F2.

Correct unambiguous labelings are obtained by classi-
fying the training set as before; here, F2 constraints were
used to classify F2 and W1 constraints to classify W1
(Fig. 4.3, bottom). We then attempted to classify W1
using F2 constraints, and vice versa. No unambiguous
labelings are found since the feature spaces are slightly
different in structure. However, if sparse vegetation and
trees are lumped together into a more general vegetation
category (VEG) and the constraints modified accord-
ingly, the results in Tables 4-2 and 4-3 are obtained.

This example shows that the expense of reduced speci-
ficity, both scenes can be classified by the same set of
constraints. By adding this third context (W1F2) and re-
peating the experiment using all three context sets, two
labelings will be found for each scene. Picking the more
specific labeling (i.e., W1 for W1 and F2 for F2) will yield
the correct answer. But now if a new situation is encoun-
tered that does not correspond to either W1 or F2, but
does contain vegetation, bare-soil, and shadows, W1F2
will be able to provide a general answer in lieu of more
detailed knowledge.

The performance of the context-sensitive classifier can
be compared to a statistical technique that matches clus-
ters using a similarity measure based on discrimination
information [16]. The discrimination information be-
tween two clusters a, and a, is given by

I(n, n') = >, {{1/oXn, m) — l/aXn', m)llcX(n, m)

— a?n', m)] + [1/o¥n, m)
+ Vao(n', ml[uXn, m) — uX(n', m)]},
where w(n, m) and o(n, m) are the mean and standard

deviation for the mth feature of the nth cluster. In Table
4-2 the cluster matching results are obtained by finding,
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FIG. 4-9. Analysis of S1 image. Original black-and-white image (upper left). False-color rendition depicting brightness in red, fractal dimension
in green, and vertical position in blue (upper right). Segmentation overlayed on the false-color image (lower left). Classification image showing trees
in green, shadows in black, sky in blue, ground in red, and areas not classified in white (lower right).

FIG. 4-3. At the top, almost true color renditions of images F2 (left) and W1 (right). Spectral bands 1, 2, and 3, (0.45-0.52, 0.52-0.60, and 0.63—
0.69 wm) are shown in blue, green, and red. In the middle, brightness and greenness images computed for F2 (left) and W1 (right) using the
tasselled-cap transform. At the bottom, classification images for F2 (left) and W1 (right). Trees are green, sparse-vegetation is dark green, bare-soil
is red, and water and shadows are black.
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FIG. 4-10. Analysis of S2 image. Original black-and-white image (upper left). False-color rendition depicting brightness in red, fractal dimen-
sion in green, and vertical position in blue (upper right). Segmentation overlayed on the false-color image (lower left). Classification image showing
trees in green, shadows in black, sky in blue, ground in red, and areas not classified in white (lower right).

for each cluster in W1, the cluster in F2 that has the ships between objects is important in attempting to asso-
smallest discrimination information and assigning the ciate objects (clusters) in one scene to those in another.
class associated with that cluster in F2 to the correspond- In order to examine the extendibility of the representa-
ing cluster in W1. In Table 4-3, the situation is reversed. tion, three context sets, one for W1, and two others de-
These results suggest that information about relation- rived from agricultural scenes in the central U.S. and in
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FIG. 4-4. Labeled feature spaces for F2 (left) and W1 (right).

Europe were used to classify F2. The context set for F2
was withheld. KN2 and M2 are Landsat TM images. In
effect we are simulating the performance of the context-
sensitive classifier to an unknown situation. Figures 4-35
through 4-8 show the digraph representation of F2, along
with W1, KN2, and M2. The results of classifying F2
using constraints from KN2, M2, and W1 are summa-
rized in Table 4-4. No unambiguous labelings are found
which indicates that F2 does not fit any of the three con-
texts.

A question is whether one can ‘‘interpolate’” informa-
tion from the other contexts. In each labeling shown in
Table 4-4, the most compatible hypothesis was selected
for each cluster. Each labeling thus contains certain er-
rors. The classification in the last column was derived by
majority rule. Although the resultant labeling still con-
tains a few errors, it represents a reasonable response to
F2 given the available knowledge. All four scenes con-
tained shadows and water, bare-soil, sparse-vegetation,
trees. Shadows and water were combined due to the diffi-
culty in separating water from shadows in most of the
imagery. F2 was over an area in Arkansas with little
background vegetation so sparse-vegetation was similar
to bare-soil in the other scenes. One of the tree clusters in

W1

FIG. 4-5.

Digraph representation of F2 context.
FIG. 4-6. Digraph representation of W1 context.
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TABLE 4-1
Texture Classification Results for Aerial
Black-and-White Images
Features Classification
Cluster
number BR FD True class  Labeling I  Labeling 2
0 0 121 WAT WAT WAT
1 65 102 SPA SPA SPA
2 61 152 TRE TRE TRE
3 101 83 SPA SPA SPA
4 104 115 SPA SPA SPA
5 134 128 BAR BAR TRE
6 151 208 BAR BAR BAR
7 40 200 TRE TRE TRE
8 95 107 SPA SPA SPA
9 89 198 TRE TRE TRE

Note. Misclassification is shown in boldface.

F2 was misclassified as crops since in two of the scenes
crops had the greatest biomass.

4.3. Black-and-White Scene Analysis

The last case study examines the utility of the context-
sensitive pattern classifier for interpreting typical out-
door scenes acquired at ground level. Figures 4-9 and 4-
10 show two such scenes (S1 and S2). Both are digitized
photographs taken in upstate New York. In each, the
original black-and-white image is shown in the upper left.
A false-color rendition depicting brightness in red, frac-
tial dimension in green, and vertical position (represented
region-by-region as is done for brightness and fractal di-
mension) in blue is shown in the upper right. The images
were computed by the method described in the Appen-

TABLE 4-2
Suburban Washington Classification Results Using Brightness
and Greenness Features

True Unambiguous Best match using
Cluster  classification labeling discrimination information
0 SHA SHA TRE
| BAR BAR TRE
2 TRE VEG TRE
3 BAR BAR TRE
4 BAR BAR TRE
b SPA VEG TRE
6 BAR BAR BAR
7 BAR BAR TRE
8 BAR BAR TRE

Note. Unambiguous labeling obtained by collapsing rules for trees
and sparse-vegetation into a more general vegetation category. Discrim-
ination information-based classification results obtained by matching
clusters in this scene to labeled clusters for rural Arkansas scene.
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TABLE 4-3
Rural Arkansas Classification Results Using Brightness and
Greenness Features

True Unambiguous Best match using

Cluster  classification labeling discrimination information
0 SHA SHA BAR
1 BAR BAR BAR
2 TRE VEG BAR
3 SPA VEG BAR
4 TRE VEG BAR

Note. Unambiguous labeling obtained by collapsing rules for trees
and sparse-vegetation into a more general vegetation category. Discrim-
ination information-based classification results obtained by matching
clusters in this scene to labeled clusters for suburban Washington
scene.

dix. A segmentation based on clustering these images
into regions with similar brightness, fractal dimension,
and vertical position is shown in the lower left.

A single set of global constraints was used to classify
both images:

*‘Sky is above ground”’

““Sky is brighter than trees and shadows”’

“*Ground is brighter than shadows’’

“Trees have a higher fractal dimension (are rougher)
than sky, ground, and shadows.”’

The classification image showing trees in green, shadows
in black, sky in blue, ground in red, and areas not classi-
fied in white is shown in the lower right. Clusters with a
relative frequency of 1% or less were not classified as
they tended to be caused by mixed pixels. Tables 4-5 and
4-6 summarize the classification performance for the con-
text-sensitive classifier and the discrimination informa-
tion-based cluster matcher described earlier. The two
scenes are more similar than those examined earlier. As a
result the performance of the cluster matcher was more

FIG. 4-7. Digraph representation of KN2 context containing CROps
and MAN-made materials.

MARK J. CARLOTTO

FIG. 4-8. Digraph representation of M2 context which contains
BRUsh.

comparable, although still somewhat poorer, than the
context-sensitive classifier.

The results in Figs. 4-9 and 4-10 suggest that good
global interpretations of images can be obtained using
very general scene models. Experiments performed by
Navon [20] indicate that visual information appears to be
interpreted in a top-down fashion, i.e., global features
(objects) are recognized first, followed by a more detailed
analysis of local structures. This suggests that the next
step might be to embed the context-sensitive classifier in
a hierarchical control structure capable of locally refining
higher level interpretations. Other areas for improvement
include representing more complex topological relation-
ships between clusters in feature space and developing
more localized context models to describe constraints
between individual instances of objects, e.g., between a
particular tree and its cast shadow. A result of using just
orderings between cluster means that it is not possible to
constrain trees to touch the ground and so we find a few
trees floating in the sky in Fig. 4-9. By taking into account
the extent (variance) of a cluster, other set relations such
as containment, adjacency, and intersection can be rep-
resented.

TABLE 4-4
Classification of F2 Scene Using Context Models for
KN2, M2, and W1

Majority
Cluster  True class KN2 class M2 class W1 class class
0 SHA/WAT SHA/WAT SHA/WAT SHA/WAT SHA/WAT
1 BAR MAN BAR BAR BAR
2 TRE TRE TRE SPA TRE
3 SPA BAR BAR BAR BAR
4 TRE CRO CRO SPA CRO

Note. The labelings shown are the most compatible; no unambiguous labelings
were obtained.
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TABLE 4-5
S1 Classification Results

Cluster True Unambiguous Best match using
number  classification labeling discrimination information
0 SHA SHA SHA
{ SHA TRE SHA
2 TRE TRE TRE
3 TRE TRE TRE
4 TRE/GRO GRO GRO
S TRE TRE TRE
6
7 SKY SKY TRE
8 TRE SHA TRE
9,10,11
12 GRO GRO GRO
13 SKY SKY TRE
14 GRO GRO Unknown
15 GRO GRO GRO
16,17,18
5. SUMMARY

A new approach to the problem of interpreting outdoor
scenes has been described. It is based on a context-sensi-
tive classifier which uses relative constraints to describe
global relationships between object classes. Contextual

TABLE 4-6
S2 Classification Results

Cluster True Unambiguous Best match using
number classification labeling discrimination information
0 SHA SHA SHA
[ SHA SHA SHA
2
3 SHA SHA SHA
4
S TRE TRE TRE
6 TRE TRE TRE
7 TRE TRE TRE
8 TRE TRE TRE
9,10,11
12 SHA SHA SHA
13,14
15 TRE TRE TRE
16
17 GRO GRO SHA/GRO
18 GRO GRO GRO
19 TRE TRE TRE
20 TRE SKY SKY
21 TRE/GRO GRO Unknown
22 GRO GRO GRO
23 SKY SKY Unknown
24,25
26 TRE SKY SKY
27
28 GRO GRO Unknown

models represent the structure of a scene’s underlying
feature space in terms of stable, physically significant
parameters. A discrete relaxation algorithm is used to
find unambiguous labelings that satisfy a set of ordering
relations between object classes. Unlike rule-based sys-
tems, these constraints provide a complete and consis-
tent description of the scene. Scenes that are similar in
structure are organized into contexts, each of which is
represented by a consistent set of constraints. Instead of
attempting to achieve a high degree of specificity and
localization within limited domains, the methodology is
geared toward recognizing general kinds of objects with
little or no human intervention over a wider range of
scenes.

Several examples were presented to demonstrate the
capability for recognizing general kinds of objects in
black-and-white and multispectral imagery acquired by
aircraft, satellite, and at ground level. Through a series of
experiments, the ability of the system to degrade grace-
fully in performance when faced with new and unknown
situations was also demonstrated.

Three main areas of research remain. The first involves
extending the models to allow other kinds of constraints
to be represented. Currently, object classes can only be
defined in terms of ordering relations between the cluster
means. The ability to use information about the extent of
an object in the feature space (i.e., its variance) to model
topological relations (e.g., containment and adjacency)
would provide added flexibility to the representation. A
second area of work involves applying the paradigm on a
more local basis. This could be investigated by embed-
ding the classifier within a hierarchical control structure,
using it to refine an interpretation based on more local
context models. Improved segmentation and clustering
techniques are a third area to be investigated. The seg-
mentation techniques used in the experiments were rela-
tively simple. As a result, objects were poorly delineated.
In order to effectively use geometrical information about
the relative size and shape of object regions, the quality
of the segmentations needs to be improved. Clustering is
currently the most time-consuming part of the process.
Finding a more efficient way to extract significant areas
that are likely to correspond to the objects of interest is
highly desirable.

APPENDIX: GENERATING REGISTERED
REPRESENTATIONS OF BRIGHTNESS, TEXTURE, AND
SPATIAL INFORMATION

This appendix outlines a method that has been devel-
oped for computing registered representations of bright-
ness, texture, and spatial information from a single black-
and-white image. The method is based on the concept of
averaging within homogeneous regions that have been
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FIG. A-1.

extracted from a brightness image. The overall process
for building registered representations involves:

(1) Segmenting the brightness image into homoge-
neous connected regions;

(2) Computing the average brightness in each region
and spreading the average over all pixels in the region;

(3) Generating one or more images that locally mea-
sure physically or perceptually significant textural fea-
tures such as roughness, coarseness, directionality, etc.;

Brightness image (a). Boundaries between connected regions (b). Region-averaged brightness image (c).

(4) Computing and spreading average textural fea-
tures over regions of similar brightness;

(5) Computing and spreading properties (e.g., the po-
sition) of each region over itself.

These representations may be accessed either as a regis-
tered set of images or as a collection of objects that repre-
sent the properties of connected regions. As discussed in
Section 4, a clustering algorithm [12] is used to segment
the registered set, returning a list of clusters that are
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passed on to the classifier. The remainder of this section
describes the above process in greater detail.

Brightness segmentation provides a label map of the
connected regions for region-averaging. A nonlinear filter
is applied to smooth brightness variations within regions
but not across edges. Several methods have been devel-
oped for this purpose: edge-preserving smoothing [19]
anisotropic diffusion [24], and filling-in processes [6].
EPS involves computing, on a pixel-by-pixel basis, the
variance over nine neighborhoods about a center pixel,
replacing its value with the average over the neighbor-
hood with the lowest variance. After several iterations
the original image I(m, n) begins to take on a “‘cartoon-
like’’ appearance. At this point the filtered image I'(m, i)
1s segmented into regions of similar brightness. To dem-
onstrate feasibility, a simple region grower was used. The
region grower produces a label map L{m, n) which as-
signs a unique label to each connected region in such a
way that L(m, n) = Lim + m', n + n') if [I'(m, n) —
I'im +m',n+ n")| <l Ilyis a threshold that controls the
number of regions that are formed. Since the goal is not
to extract potential objects per se, the algorithm is not
particularly sensitive to thresholds. A four-connected
neighborhood was used and so |m'| + |n'| = 1.

The average brightness over each region is computed
as follows. Let I, be the average brightness computed
over the kth region R,

L= 2

(m,mERy

1(m> n)/Sk >

where Sy is the number of pixels in Ry, and let I,,(m, n) be
the region-averaged brightness image obtained by spread-
ing the I, over their corresponding connected regions,

I(m, n) = LS[L(m, n) — L],

where § is the delta function and L, is the label of the kth
region. Figure A-1 shows an aerial panchromatic image
(a), the boundaries between connected regions for a
threshold I, = 4 (b), and the region-averaged brightness
image (c).

Results from human perceptual studies show the frac-
tal dimension to be highly correlated with subjective mea-
sures of surface roughness and to be a useful feature for
texture segmentation and discrimination [23]. Other frac-
tal properties that have proven to be useful in describing
textures are the lacunarity which indicates the coarse-
ness of the texture [18] and the model-fit error (deviation
from fractal behavior) which has been used to discrimi-
nate between man-made and natural textures [27]. It has
been shown that under certain imaging conditions images
of fractional Brownian surfaces are also fractal Brownian
[15] and that the fractal dimension is stable with respect
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to changes in the positions of the illuminant and the
viewer [5].

There are many ways of estimating the fractal dimen-
sion of images. Here, the fractal dimension is estimated
within a sliding rectangular window by the covering
method [27]. The covering method involves successive
dilations and erosions of the image intensity surface by

FIG. A-2.
dow (a). Result after averaging over connected regions extracted from
brightness image (b).

Fractal dimension image computed over a 21 by 21 win-
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morphological operations. The area of the image inten-
sity surface is estimated over a range of scales as

A =121 D)

(m,n)EW

T.(m, n) — B.(m, n),

where W is an M by N window;
T.(m, n) = max{T,_,(m, n) + 1, T,(m + m', n + n')}
is the dilated image intensity surface and

B.(m, n) = min{B,_,(m, n) =1, B,om + m', n + n")}

is the eroded image intensity surface at scale r, [m'| = 1,
|n'| =1, and Ty(m, n) = Bo(m, n) = I(m, n). The fractal
dimension D is estimated by solving the Jeast-squares
problem:

E = Var[(2 — D)log r — log A(r)]

over a range of scales, r, at each position of the sliding
window. The result is a local fractal dimension image.

The local fractal dimension image for the image in Fig.
A-11is shown in Fig. A-2 (a). A 21 by 21 analysis window
and 10 scales were used. Because of the averaging effect
of the window, texture features smaller than the window
are missed and texture boundaries are displaced with re-
spect to the brightness boundaries. As was done for im-
age brightness, let us average and spread the fractal di-
mension over the connected regions of L(m, n). If Dy is
the average fractal dimension over the kth connected re-
gion, D, (m, n) = Di8[L(m, n) — L] is the image formed
by spreading the D, over connected regions in the bright-
ness image. The result shown in (b) has significantly im-
proved the separation and sharpened the boundaries be-
tween textured regions.

Information about regions can be computed directly
from L(m, n). For example, in Section 4.3 vertical posi-
tion is used to discriminate sky from ground. Vertical
position is computed by calculating and spreading the y-
centroid of each region as above:

Nu(m, n) = Ny8[L(m, n) — L],
where

Nk = }’l/Sk.

)

(m,m)ERy

Other properties of connected regions such as their hori-
zontal position, area, compactness, and elongatedness
can be computed in a similar fashion but are not used at
present.
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