SPATIAL OPERATORS FOR OBJECT-ORIENTED GEOGRAPHIC
INFORMATION PROCESSING

Mark J. Carlotto and Jennifer B. Fong
The Analytic Sciences Corporation
55 Walkers Brook Drive
Reading, MA 01867

ABSTRACT

The design and implementation of spatial operators that use
multiple spatial representations within an object-oriented geographic
information system are discussed. The data structures used are
capable of representing point, line, and areal features. Selection of a
representation is based on the nature of the computation involved.
Conversions between representations occur transparently. Examples
of spatial og)erators that use symbolic and iconic data structures are
described. case study illustrating the use of the object-oriented
paradigm within a GIS application is included.

INTRODUCTION

Geographic information systems are often classified in terms of
their underlying data structures, e.g., whether they are raster- or
vector-based, or use quad-trees. On the other hand, it may be more
meaningful to think of the world being composed of objects,
(Gahegan and Roberts 1988), especially within the context of
knowledge-based systems (Smith, et al 1987) (McKeown 1987) (Fong
et al 1990). A result has been the emergence of object-oriented
geographic information systems in Ttecent years. While the
advantages of one data structure over another are subject to debate,
it is generally recognized that multiple representations are
advantageous.

This paper Fresents a uniform approach to the design and
implementation of spatial operators that use multiple spatial
representations within an object-oriented geographic information
system. First some basic concepts in object-oriented programming
are reviewed. This is followed by a description of the underlying
spatial representations that are used. After a brief description of the
software architecture, representative spatial operators are described.
A case study is presented last to illustrate a GIS application.

OBJECT-ORIENTED PROGRAMMING

Object-oriented programming allows the combination of data
structures and procedures for accessing and manipulating data
structures into objects. Once an object has been defined, copies of
that object may be instantiated. In addition to the modularity
inherent in object-oriented programming, interactions between an
object instance and the outside world takes the form of uniform
messages which are handled by the object without requiring the
sender to be aware of the processin% involved. Thus, object-oriented
Eyogramming offers a powerful tool for creating systems that are
ighly modular, flexible, and maintainable.

The object-oriented spatial operators described in this paper
were developed as part of a larger knowledge-based GIS described
elsewhere in these proceedings (Fong et al, 1990). Although the most

78

recent version of this system uses a commercial object-oriented
database management system, the initial version was developed
almost entirely in Common Lisp and is described here. Data types are
defined in terms of object class descriptions and operators for
handling messages to instances of object classes. Objects are known
as tokens and are implemented using Common Lisp structures. A
1§tructure is defined with the creation of a new token class using the
orm:

(deftoken token-class (mixins) (attributes))

where mixins are other token classes and attributes are the possible
slots for token-class. Mixins allow tokens to be constructed
hierarchically from other tokens, inheriting attributes, values, and
operators. Regions are a basic token class used to represent
connected pixel sets

(deftoken region () (label polygon x-raster y-raster
boundary-points bounding-rectangle)).

The attributes provide local storage for a region's spatial
representation(s). Other object classes that have spatial extent can
then be built upon regions using mixins ; €.g.,

(deftoken surface-material (region) (class area)).

Messages to tokens are handled by operators attached to a
structure attribute. An operator is defined with the form

(defop (message token-class) (arguments) body)
and would be called as
(send-message token-instance message (arguments)).

Examples of spatial operators are provided later in the paper.
SPATIAL REPRESENTATIONS

From a data structures point of view, it is natural to think of
eographic objects as being divided into points, lines, and regions
fNa y and Wagle, 1979). However, to do so increases the number of
kinds of spatial operations that must be performed by the GIS. For
example, if different spatial representations are used, up to six
different algorithms may be needed f"ust to compute the distance
between two objects. One design goal was to select multiple data
structures, each capable of representing point, line, and areal
features. Since computation is performed on a discrete grid, they can
all be represented as connected pixel sets. Given that different
representations are better suited to certain types of spatial
computation, a second design goal was to develop a means for
converting between representations in a transparent fashion.

Six kinds of spatial representations are currently used: label
maps, x-rasters, y-rasters, polygons, boundary points, and bounding
rectangles.

Label Maps are the most direct way of representing thematic
data in iconic form. The label map partitions a database layer into
disjoint pixel sets which may, or may not be spatially connected. Each
pixel set is assigned a unique number (label) corresponding to the

79

slot value of the object that it represents.

X- and v-rasters are used to represent connected sets of pixels
using row- and column-oriented run-length encoding schemes. The
are %)ased on the concept of a tightly closed boundary (Merrill 19733,
defined below. (The use of the term raster in this context should not
be confused with images.) Raster representations may be generated
from label maps or from polygons. X-rasters are defined by a y offset
(the y coordinate of the top row of the connected set) and an array of
x coordinates. The elements of the array contain the lists of the x
coordinates which define the beginnintg and end points of runs of
pixels in each row. The y coordinate of the run is equal to the array
index plus the y offset. The length of the array 1s equal to the
number of rows in the connected set. In Fig. 1 the x-raster
representation of the bitmap (a) is depicted in (b). A similar
approach 1s used to represent y-rasters which are defined by an x
offset (the x coordinate of the leftmost column of the pixel set) and
an array of y coordinates which define the beginning and end points
of runs of pixels in each column (c).

34
« a7
I
" (1 8)
= (126 8)
i 2368)
1578)
(1 8)
© 8)
x=01,.9 x =0,1,...,9 0 9
(7 9)
(a) Connected region (b) X-raster representation
«
I
L
o
5 5050 50 %0 (d) Boundary points
w <t v N O —~ —
N R
Cocoecocomde

(¢) Y-raster representation

Fig. 1 Spatial representations based on the tightly closed boundary

80

Boundary points are the pixels which comprise the boundary of
a polygon or a connected pixel set represented in a bitmap. The
boundary points define a tightly closed boundary (Merrill, 1973)
where adjacent points are no farther than a diagonal distance apart.
The boundary points of an object are the union of its x- and y-
rasters (Fig. 1d).

Polygons provide a means for representing information that is
manually specified or has been generalized. They are stored as a list
of vertices and may be converted to rasters, boundary points, or
bounding rectangles. Bounding rectangles are a special type of
polygon which are used for range searching by certain spatial
operators.

For each representation, a looping macro is defined to facilitate
access of pixels within that representation. In the spirit of
object-oriented programming, conversions between representations
take place transparently as they are needed. For example, if the
boundary points of an object are needed by a spatial operator and
the x- and y-rasters exist, then the boundary points are computed
from the intersection of the x- and y-raster representations; if the
olygon exists, it is computed by generating the intermediate points
etween the polygon's vertices; otherwise, the user is notified that
the operation cannot be performed with the available data.

Database
oot : Symbolic
: R-’I(’)rees : ’, Processing GIS Interface
N / \ N Operators
e o i
C A P : Working
.LO‘ O Q \O_: I Memory
N Tokens X X ,
5 (O) :»——b: Tokens E
: = : : : ICOHIC/
:-‘- ----------- \. : “““““““ -: Symbolic
: — N ! + |Transformations
; — P I :
; L Images N N naees \
Image
Processing
Functions

Fig. 2 Hybrid (image/symbol) architecture for spatial analysis

81

SOFTWARE ARCHITECTURE

Fig. 2 depicts the software architecture. The database pictured
to the left is partitioned into areas for storing images, tokens and
R-trees. A database management system, described in (Fong et al
1990) is responsible for moving the various data structures in and
out of working memory. In the most recent implementation, R-trees
are being used by some symbolic processing operators for range
searching. Transformations between iconic (i.e., images) and symbolic
domains are performed as part of certain sfpatial operations and
include connected pixel labeling and functions for writing tokens into
arrays. Image processing includes morphological operations on
blitma)ps, and thresholding and averaging on numerical data (e.g.,
slope).

SPATIAL OPERATORS

Spatial operators may be divided into two types: unary
operators that compute information about a single object at a time,
and n-ary operators that compute information about relationships
between objects.

Unary operations include those for computing the area,
perimeter, compactness, length, width, and average value of an
object. As an example, the implementation of an operator that
coinputes the average value of an object over an array is presented
below:

(defop (:average token) (array)
(let ((result0))
(loop-x-raster (send-message myself :x-raster) 1 I array)
(incf result (aref array x y)))
(send-message myself :set-average
(/ result
(send-message myself :area)))))

When the form (send-message token-a :average slope) is executed, if
the slot value of average in token-a is nil, the above operator is
invoked. The macro loop-x-raster generates (Xx,y) addresses within
the support of token-a. The average value is computed over the
array slope and the result is stored in the slot average of token-a.

Another example of a unary operation is computing the length
and width of an object with respect to a given direction ¢. An object's
bounding rectangle can be determined from its boundary points by
finding the largest and smallest values of x and y. The length and
width in the direction ¢ can reduced to the bounding rectangle
calculation by rotating the boundary points

x'=xcos ¢ +ysind

y =-xsin ¢ +y cos ¢

and finding the largest and smallest values of x' and y"

N-ary operations include those that do not require auxillary
representations such as centroid-to-centroid distance and
containment, and those that do, e.g., adjacency, minimum distance,
and line of sight. The syntax for containment is typical of the n-ary
operators:

82

(send-message token-a :(contains other-tokens)

which returns all tokens from the list other-tokens that are
contained within foken-a. The dual operator :is-contained-by
returns all tokens in the list other-tokens that contain token-a. The
problem of determining whether or not a point is contained in a
given region is well known. Merrill (1973) shows that region
containment is easily solved using TCBs. However when regions are
disjoint, the TCB containment algorithm must be modified.

Consider the problem of determining if the connected region
represented by the six white interior pixels are contained in the
black connected region in Fig. 1. Evidently the intervals (3 5), (4 5),
and (6) lie outside the corresponding intervals (1 2 6 8), (2 3 6 §),
and (1 5 7 8) which implies that the white region is not contained
within the black region. A modified containment algorithm was thus
developed that requires that the intervals of the x- and y-tasters of
object-a lie within the corresponding “outer” intervals of the x- and
y-rasters of object-b; i.e., that the x intervals (3 5), (4 5), and (6) lie
within (1 8), (2 8), and (1 §); and that the y intervals (3), (3 4), (3 4),
and (5) lie within (0 8), (0 8), (1 8), and (1 8).

Operations like containment may mneed to examine a large
number of objects. As a result it is important that the list of
candidate objects be pruned using an inexpensive operation, e.g., by
eliminating all objects whose bounding rectangle is not contained by
that of the object being queried. In the most recent implementation
R-trees are used, providing much improvement over a linear search
of bounding rectangles.

Auxillary representations are also used by certain spatial
operators as mentioned earlier. Consider the adjacency operator:

(send-message token-a adjacent-to other-tokens)

which returns all tokens from the list other-tokens that are adjacent
to token-a. A direct way for computing adjacency involves creating a
label map of other-tokens and looping around the boundary of
token-a building a list of unique labels. If, when the label map is
built, another data structure that indexes tokens by their label is also
built, the list of labels collected along the boundary can be converted
to a list of adjacent tokens.

A common query is to return all objects from one set that are a
certain edge-to-edge distance from another set. The computational
complexity can be prohibitive when there are a large number of
objects 1n both sets. An alternative is to use a distance
transformation (Rosenfeld and Pfaltz 1966) that involves marking
one set of objects with zeros in a arraly and computing the distance
from any pixel in that set to all pixels in the array. The distance
transform algorithm requires two passes over the array:

d(m,n) = 0 if d(m,n)=0
min [d(m-1,n) + 1, d(m,n-1) + 1)] (m,n) = 1
M+ N otherwise

in the first pass performed left to right and top to bottom, and
d(m,n) = min [d{m,n), d(m+1,n) + 1, d(m,n+1) + 1]
in the second pass performed right to left and bottom to top. Once

83

the distance image has been computed, the edge-to-edge distance to
each object is found by looping along the edge of the object.

It should be noted that for single object queries, use of
auxillary label maps may be inefficient since the computation will be
of the order of the size of the label map.

CASE STUDY: AREA PRIORITIZATION

A knowledge-based system for prioritizing large geographic
areas was the primary motivation for developing the spatial
operators described in this paper. The system identifies areas that
satisfy a set of constraints expressed in the form of rules. The rules
are grouped into frames which are further organized in a hierarchical
structure. In the earliest implementation, constraints returned the
objects that satisfied the constraint; e.g.,

(distance-between forests roads '< 100)
would evaluate the form

(send-message forest-n :distance-between roads)
for each token in the list forests. An object would be returned if it
satisfied the specified predicate and value. The current version uses

fuzzy predicates instead of hard constraints and returns the object
along with a value between zero and one.

—

Forested Region Dilated Forest Slope Data Adjacent Areas

Fig. 3 Segmentation and the creation of new objects

The inference process can be viewed as a series of symbolic
filters that are applied to the objects that represent the underlying
terrain. Constraints can also lead to the creation of new objects by
segmenting objects from one database layer with information from
another. Fig. 3 depicts the extraction of open areas that are adjacent
to a forest and illustrates the use of image processing techniques
within the GIS. The forested region is marked with zeros in a
working array d(x,y) and dilated using the distance transform
discussed earlier. The distance image is thresholded by an amount
proportional to the desired width of the adjacent areas. An auxillary
constraint is that the slope within a newly created connected region
must be less than some amount. The slope image is thresholded and
intersected with the thresholded distance image. Tokens are then
created and returned for subsequent processing by the GIS.

84

SUMMARY

The implementation of spatial operators using multiple
representations within an object-oriented GIS was described. The
added complexity in wusing multiple representations can be
ameliorated, in part, by using an object-oriented paradigm. The
advantages of using iconic representations may depend on the nature
of the processing involved. In particular, the greatest benefit is
achieved for certain n-ary operations involving large numbers of
objects. Additional research into the advantages of mixed
representations is needed.

REFERENCES

M. J
image/zymbol processing environment,” SP/
1988, Cambridge MA.

Carlotto and J. B. Fong, "Ome%a:VAn 88]'3ect-oriented
, Vol. 1 , November

M. N. Gahegan and S. A. Roberts, "An intelligent object-oriented
§eographica1 information system," Int. J. Geographical I[nformation
ystems, Vol. 2, No. 2, 1988.

D. M. McKeown, "The role of artificial intelligence in the integration of
remotely sensed data with geographic information systems,” [EEE
Trans. Geoscience and Remote Sensing, Vol. GE-25, No. 3, May 1987.

R. D. Merrill, "Representation of contours and regions for efficient
c%m uter search,” Communications of the ACM, Vol. 16, No. 2, Feb.
1973.

G. Nagy and S. Wagle, "Geographic data processing,” Computing
Surveys, Vol. 11, No. 2, June, 1579.

A. Rosenfeld and J. L. Pfaltz, "Sequential operations in digital picture
processing,” Journal of the ACM, Vol. 13, No. 4, October, 1966.

T. Smith, D. Peuquet, S. Menon, and P. Agarwal, "KBGIS-II: A
knowledge-based geographic information system," [nt. J.
Geographical Information Systems, Vol. 1, No. 2, 1987.

85

