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ABSTRACT

A new formulation for shape-from-shading from multiple
images acquired under different viewing and lighting conditions
is presented. The method is based on using an explicit image
formation model to create renditions of the surface being
estimated, which are synthetic versions of the observed images.
It is applicable in a variety of imaging situations, including those
involving unknown non-uniform albedo. A probabilistic model
is developed based on typical characteristics of the surface and
minimizing the difference between the synthetic and observed
images. This model is used to arrive at a Bayesian formulation
of the shape-from-shading problem. Techniques are presented to
compute an estimate that is statistically optimal in the sense that it
is the expected value of the surface, given the set of observations
derived from it. The method is applied to Viking imagery of
Mars.

1. INTRODUCTION

A variety of "shape from ..." methods have been
developed for estimating the relief of three-dimensional surfaces
under a variety of surface, viewing, and lighting assumptions.
Two methods which have been used in terrestrial and planetary
remote sensing are shape-from-shading and shape-from stereo,
or stereoscopy. Shape-from-shading techniques usually involve
the determination of surface gradients from shading information
in one or more images (the latter includes the method of
photometric stereo). Elevations are then determined by
integrating the gradients. In stereopsis, the heights of objects are
determined by computing the disparity of the object between the
left and right image and relating disparity to height via the
camera model. Ideally, in shape-from-shading the image(s)
should be acquired at nadir, or at least from the same perspective
so that there is no geometrical distortion due to relief. For stereo,
the images should be acquired under similar lighting conditions
so as to minimize confusion in the matching process. Under
typical imaging situations neither condition is perfectly satisfied.

The above motivates a new method which integrates
shape-from-shading and stereoscopy. Others have proposed
methods for combining the two approaches. Ikeuchi [1]
proposed that shading information be used instead of
interpolation to fill in elevations derived from feature-based
stereo. More recently, Marroquin et al [2] have suggested the
possibility of taking a probabilistic approach to a cooperative
solution of perceptual problems. They also suggest an
optimization criterion for single-image uniform-albedo shape-
from-shading, but it differs from ours as a special case. Most
notably, it is based on the extraction of surface gradients as
opposed to direct determination of elevations. To the best of our

knowledge, no physically-based, systematic approach to the
solution of the integrated problem has been developed.

The method presented in this paper is appropriate for the
extraction of shape information from a set of observed images in
situations when an image-formation model and any necessary
ancillary information is available or can be derived, so that the
rendering of a synthetic version of each member in the
observed-image set from the surface is possible. Attention is
concentrated on planetary remote-sensing, where certain
assumptions are valid, and lighting and viewing conditions for
each image are known. Elevation information is conveyed by the
observed images through shading and parallax.

The basic idea behind the method is to compute a surface z
for which the following cost or energy functional is small:

U@ =] J% I (x,y) = (x0T + AVz(x,y) 12 dx dy (1

Each term in the summation is the absolute difference between
an observed image Iy and a synthedc image IS rendered from
the elevation surface z under the lighting and viewing conditions
for the kth sensor. A constant of proportionality A weights a term
which dictates that, loosely speaking, the elevation surface be
smooth. More precisely, it represents a prior assumption about
the characteristcs of the elevation surface.

A flavor of the computational technique follows that is
used to arrive at an estimate of the elevation surface which is
statistically optimal in the sense that it is the expected value of
the elevation surface, given the set of observed images formed
from it. The surface is repeatedly swept, with a change proposed
at each pixel site. The change is accepted with a probability
which increases with the merit of the change, based on a local
measure derived from the above energy functional. The
convergence behavior of the local updates is such that the
elevation states satisfy the energy functional globally, in the
sense that favorable low-energy states are highly probable.
These states are then averaged to obtain an approximation of the
optimal surface estimate.

The organization of the remainder of the paper is as
follows. Section 2 discusses the effects of illumination, sensor
geometry, and surface reflectance on the image formation
process. Section 3 presents the probabilistic aspects of the
model in the context of Markov random fields. The optimization
criterion is constructed using a Bayesian formulation. Section 4
presents computational methods and considerations used to
implement the method. Section 5 presents experimental results.
Synthetic imagery is used to test the technique in a controlled
environment. Inidal results obtained by applying the technique to
Viking Orbiter imagery of Mars are also presented.
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2. IMAGE FORMATION MODEL

In order to recover the shape of imaged surfaces via the
creation of synthetic renditions of the surface, an explicit image
formation model is developed. The surface is described by a
function z(x,y); i.e., it is assumed single-valued. Surface
orientation at (x,y) is described through the partial derivatives
which make up the gradient, 9z(x,y)/9x and dz(x,y)/dy, denoted
p(x,y) and q(x,y), respectively. The image formation process is
derived by first calculating the surface, or scene radiance, and
then the irradiance falling on the image plane, through the
appropriate projection.

Plan Rem nsing Model

An image-formation model valid for planetary remote
sensing, the application area of the experiments presented here,
is given by the following, and is depicted in Fig. 1. The
illuminant, the sun, is assumed to be a point source located at
infinity. Its position in gradient space for image k is (py, qx)-
where py=tan¢ycosfy and qy=tan¢ysinéy, with ¢ the zenith
angle, and 6 the azimuth angle with respect to the x axis. If the
atmosphere is modeled as an optically thin, semi-infinite,
plane-parallel, horizontally homogeneous air mass, and if the
variation in elevation is small relative to the depth of the
atmosphere over the field of view, the scene radiance can be
approximated by [3]

Lutx) = (& JTulIoTaRlpx) )

+ Lrlp(x,y),q(x, )1} + L, V)]
where p is the albedo, I, the extra-terrestrial solar irradiance, T,
and Ty atmospheric path transmittances, I the sky irradiance,
and L, the atmospheric path radiance. A reflectance map, or
function, relates surface orientation and brightness. Ry(.) is the
reflectance map for directly illuminated areas, r(.) for shadowed
areas, which are lit by ambient light.

Horn [4] reviews reflectance functions which have been
used for creating shaded renditions of surface topography. In
planetary remote sensing, the Minnaert function cos®i cos¥-le
1s often used, where incidence angle / is the angle between the
surface normal and a vector in the direction of the light source,
the emittance angle e the angle between the surface normal and a
vector in the direction of the sensor focal point. The Minnaert
function with x=1/2 has been shown to be a good model for the
maria of the moon. In fact, the earliest application of
shape-from-shading (also known as photoclinometry) was in
lunar mapping [5]. The Minnaert function is widely used in
remote sensing studies of Mars (see, for example [6]). With
k=1, the function is equivalent to the Lambertian reflectance
function, which has been used to reconstruct isolated surface
features on Mars [7].

In shadowed areas the first term in (2) is zero. A surface
patch is shadowed if the incidence angle i of the light-source is
greater than 180°, or most generally, if a ray between the patch
and the sun intersects the surface (see [8], e.g., for hidden
surface removal algorithms). Since I,T4 >> I typically, in
directly lit regions the ambient term in (2) can be ignored.

Lambertian Model
A Lambertian surface radiates uniformly in all directions.
Here, reflectance maps for point-source and ambient illumination
in (2) are presented. Directly lit portions of the surface are
affected by point-source illumination; the reflectance map for a
Lambertian surface directly illuminated by a point light-source at

(px-qy) is given by
(ppi+taqit1)

n (3a)
(p2+q2+1) 7 (pﬁ+q12(+1)

Ri(p,q) = 72

Fig. 1. Planetary image-formation model.

where the notation giving the dependence of p and q on (x,y)
has been suppressed. The point-source reflectance map is a
normalized inner product of the surface normal vector and a
vector in the direction of the light source. Ry(p,q) is maximum at
(Pk»9k), Which corresponds to a patch oriented orthogonally to
the light source.

In shadowed areas, the surface is lit by ambient light. The
reflectance map for a Lambertian surface illuminated by a
uniform hemispherical source is

1(p,q) = (1+(p2+q2+1)1/2) / 2 (3b)
Note that because the source is circularly symmetric, the
mapping depends on only the magnitude of the gradient.

Image-Plane Projection
The model allows viewing the surface from an arbitrary

perspective, which involves projecting the surface onto the
image plane of the sensor as depicted in Fig. 1. Assume a
standard down-looking frame camera with focal length f and
position (Xy, Yy, Zy); points on the surface z(x,y) are mapped
onto the image plane via a perspective transformation [8]. For
the sensor geometry in Fig. 1

X =Yy @)
= 1Zztoy] 7 YT T2 zoy)]

In general, a point's position in (xy, yi) depends on x, y, and z;
however, if the relief is small relative to the height of the sensor
(i.e., 1Azl << Zy), and the field of view small relative to the
sensor position (i.e., IAxl << X, and 1Ayl << Y}), the coordinate
transformation is given by

f[ i )]- -y Py ©

Xg = Z X Zkz LY |5 Y= 70 y Zkz X,y

The above simplifications amount to assuming that a parallel
projection holds, which is not unrealistic in remote sensing. In
(5), the surface at (x,y) is simply shifted in the image by a
disparity proportional to z(x,y).

Image-Formation Inversion
It is worthwhile at this point to examine the benefit of

using multiple images in recovering shape information. Note that
the problem is an inversion problem; i.e., the image formation
processes associated with the observed images are inverted to
derive a surface which is consistent with the observations. If the
mapping from the surface to an observed image is one-to-one
and uncorrupted, a single image is adequate; however, this
situation is not realistic. As an example, consider that an image
of a surface region which is shadowed and not lit by ambient
light conveys no shape information. If another image is available
in which this region is lit, it contains the missing information.
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Addidonally, for some regions of the domains of the reflectance
maps described above, the functions are relatively constant, so
little information is conveyed. Generally, it makes sense to
utilize all available information in reconstructing the surface.

Non-Uniform Albedo

Thus far, homogeneous reflectivity characteristics of the
surface have been assumed, i.e., constant albedo is assumed in
(2). However, the method is also applicable when albedo is
spatially varying. Consider the following image-formation
model:

Ik(x,y) = p(x,y) Re(p(x,y),9(x,¥)) (6)
The reflectance map Ry (.) relates surface orientation and image
intensity for a patch having unit albedo under the lighting
conditions for image k. All shape information, which is
manifested as shading, is contained in Ry(.); the albedo p(.)
contains information about the reflectivity of the surface.

If the albedo is known, it is simply used in the rendering
process. If it is unknown, the problem is to find an elevation
surface and an albedo field which are consistent with the
observed image intensities, through comparison of the
observations and synthetic renditions. The albedo is
incorporated by associating with each state of the elevation
surface an albedo image which makes the comparison most
favorable; e.g., the albedo at (x,y) is related to the surface by

plx.y) = arg min X [l Gey) - PG YR (P, ).qxy N1 (7)

which is a simple least-squares optimization. Note that at least
two observed images are required in order for the method in this
situation to yield meaningful results; a single image can be
explained perfectly on the basis of albedo alone, independent of
surface shape. Other possibilities include constraining the albedo
field to consist of one of a few values, if appropriate. The basic
idea is to use an albedo consistent with the shading and
observations. The energy functional (1) is then still small for
favorable elevation states.

3. MARKOV RANDOM FIELD MODEL

In this section, a probabilistic model is developed which
reflects realistic assumptions about the observed image(s) and
the underlying elevation. Background on Markov random fields
is provided as a context for presentation of the model. The
distribution of the elevation surface is given, and the derivation
of relationships to well-known processes and the effect of lattice
approximation is presented. The distribution of the observed
image is then derived based on the elevation model. These
distributions are then used in a Bayesian formulation of the
optimization problem.

Background on Markov Random Fields
Markov random fields, described through Gibbs

distributions, have become popular for image modeling [9],
[10], [11]. The main utility of the Gibbs distribution lies in the
fact that a random field can be described in a tractable manner in
terms of local interactions which are in accord with desired
behavior. Gibbs models allow a rich, robust description of
interesting classes of images within practical computational
constraints.

The Markov property in a multi-dimensional setting on a
lattice is defined with respect to a neighborhood system
n=(ny}, where n;; depotes the neighborhood of pixel site (i,j).
The Markov property is given by

p(xij | Xk, (D) = p(xjj | Xy, (kDeMij) ®
Here, the neighborhood consisting of the eight nearest neighbors
is adequate. A Markov random field can always be expressed in
the form of a Gibbs distribution [9]:

p(x) = —lz- exp{-Ux)}; Ux)= X V() 9)
ceC
where c is a set of pixels that are neighbors of each other, called
a clique; C is the set of all cliques; U(x) is an energy functional,
V.(x) is a clique potential which describes the interaction among
members of clique ¢; Z is a normalizing constant. The
relationship between the Gibbs distribution and the Markov
property is demonstrated by the following. Consider
p(x)

pxij | xgep, (kD) = 500 40T (10)
ij

where p(x) is given by (9). Note that the normalizing constant
and all clique potentials cancel with the exception of the
potentials involving cliques of which (i,j) is a member. This
gives rise to the Markov property (8).

Distribution of the Elevation Surface

In this section the model for the elevation surface is
presented, which yields the prior distribution in the context of a
Bayesian formulation. The model is based on using a membrane
smoothing constraint as the energy in a Gibbs distribution,
which is a special case of a formulation used by Marroquin et al
[2]. The resulting process has some interesting properties which
are derived here. Most notably, the process described by the
Gibbs distribution is the well-known Wiener process, also
known as the Wiener-Levy process or Brownian motion.
Fractional Brownian motion [12], of which Brownian motion is
a special case, has been used previously to model natural
surfaces [13] (usually, fractional Brownian motion with a fractal
dimension smaller than that of Brownian motion is used, but in
this case the field is not Markov). Discrete versions of the
process are of obvious practical relevance. In one-dimension,
the discrete process is Markov, and is equivalent in distribution
to a sampled continuous process. However, the lack of a natural
ordering on a lattice prevents this from carrying over fully to two
dimensions. These ideas are developed in the following
discussion.

Consider first the Wiener process in one dimension, which
has the following representation [14]:

t
wlt) =J V() ds (11)
[

where v(.) is zero-mean normal white noise. There is a minor
problem with initial values in this representation; assume that the
process is actually a family parameterized by an additive offset,
and exists over an adequately sized window. Additionally,
assume the existence of appropriate stochastic integration and
differentiation operators. The process has independent
increments: for tp<t)<typ<ts

E{[w(t3)-(tp][w(t))-w(tp)l} =0 (12)
The variances of the increments are given by
E{[w(t)-w(to)]} ~ Ity-tol (13)

Now, a discrete, finite-support process is formed by sampling
the Wiener process within a window. The joint distribution of
the samples, due to the samples having independent normal
increments, can be expressed as a product of normal
distributions. That product has a Gibbs form with energy
functional:

. . 2
Ulsw) - Z{ W(IT)_vf]r((l—l)T)} (14)

1
where w is a vector of samples; and T is the sampling interval.
Note that each element in the sum corresponds to a clique
potential; the following Markov property is then evident (the
sampling notation is hereafter abandoned):
p(wi | wy, k#1) = p(w;l wi_ 1, Wi, 1) (15)
Furthermore, letting T— 0 in (14),
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Uw) - j [%w(t)fdt (16)

A Gibbs distribution having this energy describes the Wiener
process since the distribution dictates that infinitesimal
increments are independent, which is evident from the above
representation (11).

The above shows that a 1D discrete process based on
approximating the derivative with a first difference is equivalent
in distribution to a sampled continuous process. In two
dimensions the Wiener process becomes

U(w(-,-)) ~ [ IVw(x,y)i2 dx dy an
From the properties of gradients, w(x,y) is circularly symmetric
in the plane, so that the process along any line in the plane is a
1D Wiener process and equivalent in distribution to the process
along all other lines, independent of orientation. Therefore, in
2D, (13) becomes

E{[w(x1,y1)-W(x0,¥0)1?) ~ [(x;-x0)2+(y1-yp)21V/2  (18)

The 2D discrete process which is used in the experiments
is now examined, which is a lattice approximation to the 2D
Wiener process, and has energy

U@) ~ X {(zij - i1 P2 + (75 - 25.1)%) (19)
The differences approximate the partial derivatives in (17). The
process has the 2D Markov property

pzij | 2igp, D)) = P(Zij | Ziey o Ziv jo Zi 10 Zi 1) (20)
However, unlike the 1D case, this process 1s nor the one
obtained by sampling the 2D continuous process. This can be
shown by a simple contradiction. By the above (19),

E[(Zij - Zi—l,j)(zij - Zi,j—l)} =0 (21)
this implies

E{(zij1 - zi-1 )%} = 2E((zjj - 2i1)?) (22)
however, by (18),

-E{(Wi\j—l_wi—l,j)2} = ‘IEE{(Wij—Wi_l,j)z} (23)

where E{} denotes an expectation. The 2D Wiener process is
such that only increments along a line are independent.
Therefore, in the sampled process, the x-direction
first-difference is not independent of the y-direction
first-difference, which is the basis for the contradiction. The 2D
discrete process z is not isotropic in the sense that increment
variances along other than lines along x or y do not match those
of the sampled isotropic, continuous process. In any event, the
2D discrete process is at least an approximation of the sampled
process, and has a valid probability distribution because it has a
Gibbs form. A realization is shown in Fig. 2.

The above shows the utility of the Gibbs distribution in
deriving Markov properties, and of particular relevance here, the
effect of discrete approximation of derivatives.

Distribution of thi ervation

In this section the distribution of the observed image
intensities is derived based on the elevation distribution and a
simple point-source illuminated Lambertian surface. The
intensity distribution conditioned on a known elevation surface
is then provided for the most general image-formation model,
which is the distribution directly used in the processing. For the
simple model, because the intensity at a site is related to the
elevation surface by the point-source reflectance mapping, one
can derive the marginal distribution of the intensity using
methods for determining the distribution of a function of a
random variable having a known distribution [14]. Because the
distribution of the elevation surface is circularly symmetric, the
orientation of the coordinate system is arbitrary with respect to
the (x,y) plane. Choose an orientation such that the derivative in
the elevation plane, in the direction of the light source, is along
x. The normalized (unit-albedo) intensity I is then given by the
point-source reflectance mapping (3a) in this coordinate system

Fig. 2. Realization of the elevation model.

+1
1= R(pag) = 2Pt %)
(p™+q™+D(pg+1)

where (p,,0) is the orientation in gradient space of the light
source. A plot of R(p,0) for various values of p, is given in Fig.
3. Assume an off-nadir light-source position and a gradient
distribution with a small variance, which constrains the domain
of R(.) to a region about the origin in the gradient space (these
are valid assumptions for the Martian imagery). The partial
derivative in the light source direction then dominates the
behaviour of the reflectance map; i.e.,
R(p,q) = R(p,0). The p.d.f. for the intensity is given by

)]
() = 3 __f;p.(l_)_
i IRGpY o)
where R'(.) is the derivative with respect to p; and {p{D) are the
roots of R(p,0). These are obtained by solving for p in
((1+pDI2-po2)p2 - 2pgp - (14+p2)I2- 1 =0 (26)

The second-order polynomial is obtained by manipulating the
expression for R(p,0). Note that the intensity is squared in the
polynomial so that roots must be checked for the sign of the
intensity. There are either one or two roots for each positive I; in
the case there is only one, the other root of the polynomial yields
-I, which corresponds to a shaded patch, so the term for that
root in the sum in (25) contributes to the area of an impulse in
f1() at I=0. The distributions for op= 0q= 0.125 and various
values of pg are shown in Fig. 4.

Recall that the gradient distribution is normal, and note in
Fig. 4 that R(.,0) is close to linear about p=0 for large p,
(off-nadir light sources). For these reasons, the intensity
distributions are nearly normal themselves, because R'(.,0) is
constant in the p.d.f. expression (25). This implies that a
first-order Taylor series expansion at p=0 of R(.,0) is a good
approximation under the above assumptions, which results in
significant computational savings. This linear relationship is in
agreement with the computer graphics trick of simply applying a
derivative operator and then scaling and offsetting to arrive at a
realistic-looking shaded rendition from an elevation surface.

The intensity distribution derived above is a marginal
distribution based on normally distributed gradients. However,
in the absence of strict assumptions, the distribution is robust in
the sense that it is adequately valid for any elevation surface in
which gradients on the surface are distributed about the origin in
gradient space. Figure 5 shows the agreement of the theoretical
distribution with histograms of portions of the Martian imagery.

(25)
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Fig. 5. Martian and theoretical intensity distributions.

Knowledge of the theoretical distribution also allows inferences
about the image formation process; e.g., parameters of the
reflectance mapping may be derived.

Necessary for the Bayes formulation is the distribution of
the observed images, conditioned on the elevation surface,
which has a Gibbs form with energy

U3 1 2)=c 2, % I L) - [0 | Q7N
l‘.’

where ¢ is a constant; {Iy} is the set of observed images;
{I;syn} is a set of renditions of the elevation surface obtained

through appropriate reflectance mapping; and (i,j) are mapped
from (iy,.jx) via the sensor geometry model as described in
Section 2; i.e., the observed images are mapped to a common
projection. The distribution is such that an observed image
which matches a rendition of the surface is highly probable. The
incorporation of the absolute difference in the model as opposed
to enforcing strict correspondence allows for three real-world
considerations: 1) noisy data; 2) distortion due to the absence of
strict model validity; 3) a smooth posterior distribution (Section

4), resulting in better convergence properties of the estimation
procedure. The conditional distribution at a single site is a
two-sided exponential distribution, chosen for its robust nature,
centered on IiSyn[i,j]. Note that the rendered intensity at (i,j)
depends on the set {zjj, zj.1j, z; j.1) Which is used in the local
slope approximation. This set is a three-pixel clique in the Gibbs
distribution.

Optimization Criterion
The opumal estimate of the elevation surface is given by
E{z| (L)) =]z p! (L)) dz (28)
the expected value of the elevation surface conditioned on the set
of observed images. The posterior distribution is given by

Bayes' theorem:
(TT p(Ig | 2)] p(z)

(z{hH =
P T M oty 1 2] pta) a2
This distribution is also Gibbsian, with energy
Uz | (I)) = S UQy 1 2) + U@ (30)
Note the implicit assumption that degradations associated with
each observed image are independent.

(29)

4. OPTIMIZATION METHOD

In this section the computational aspects of the method are
presented. The Metropolis algorithm [15] is presented, which
allows Monte Carlo approximation [16] of the integral in (28) to
obtain the optimal estimate of the surface. This procedure is
augmented by a multi-resolution approach framed in the context
of scale-space continuation [17].

Metropolis Algorithm

The above optimal estimate (28) is obtained by sampling
from the posterior distribution, and then averaging these samples
to obtain a Monte Carlo approximation of the expected value of
the elevation surface, given all available observations. The
Metropolis Algorithm is the procedure by which realizations
from the posterior distribution are generated (a different
sampling algorithm is given in [18]). The procedure is given as
follows. Given the present state x of the system, one randomly
choses another configuration x'. The ratio

r = p(x")/p(x) (31
is evaluated. If r>1, x' becomes the new system state. If r<1, X’
becomes the new system state with probability r. As the total
number of proposed changes gets large, the system states
become samples of the joint distribution. When this ocurrs, the
system is said to be in equilibrium. In precise terms, the
procedure generates a Markov chain (in time) which has a
limiting distribution p(x).

This technique is applied to the posterior distribution, so
that the state of the elevation surface evolves through time,
guided probabilistically by the conditioning observations and the
characteristics of typical surfaces. The change proposals are
chosen so that they differ from the current state at only one site.
Because the posterior distribution is Markov with respect to the
eight nearest neighbors, the ratio computation (31) involves a
small set of intensity and elevation values. To avoid imposing
the time causality on the lattice, the change sites are chosen
according to the coding method [9].

Scale-Space Continyation

It is obvious that a state proposal is not independent of the
current state. As noted in [16], it is possible that the system,
dependent on the initial configuration and the nature of the
posterior distribution, finds itself in a region of the state space
for which the transition probability to a more representative
region is very small, so that the transition does not occur in a
practical amount of time. The system gets stuck in a locally
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probable region. Although the potential for disaster is not as
severe as with a deterministic update algorithm, which is the
basis for simulated annealing [10], some protective measures are
in order.

Scale-space continuation was proposed by Witkin, et al
[17] in a deterministic setting to combat the local-minimum
problem in their solution of the signal-matching problem. The
idea of a continuation method [19] is to embed a problem in a
parameterized family of problems in which the parameter is
related to the ease with which a member of the family is solved.
A hierarchy of problems are solved in which a solution at one
level serves as the starting point for the next, more difficult
level. In scale-space continuation, the parameter is the standard
deviation ¢ of a Gaussian-shaped smoothing kernel which is
applied to the input signals. The smoothed input gives rise to
well-behaved optimization criteria in the sense of avoiding
getting stuck in locally optimal states. Here, a family of posterior
distributions is created through smoothing the conditioning
intensity images. The hierarchy is formed by smoothing the
full-resolution observed images with a kernel with o=T
(sampling interval). The Fourier transform of the kernel is itself
a Gaussian kernel in frequency with of =1/(2nT). The smoothed
data are therefore downsampled by a factor of two without
excessive aliasing. Lower levels are created from their parents in
the same way. Samples (in the statistical sense) are
probabilistically tracked through scale by applying the sampling
algorithm to the lowest-level posterior distribution first. When
the system reaches equilibrium, the elevation surface is
upsampled and serves as the initial configuration for the system
at the higher level. Conveniently, the relationship among
first-order differences among elevation surfaces at different
levels is given by (18). The hierarchical scheme generally is
known as a coarse-to-fine or multi-resolution approach, which
has been widely taken in image processing [20].

The optimization strategy combines probabilistic updating
and scale-space continuation. The ideal scenario is one in which
at the highest level the states of the system at equilibrium are in
the most probable region of the state space. States within this
region are averaged to form the optimal estimate. The technique
through experimentation has proved to be robust and consistent
with the design philosophy of achieving a good solution while
expending a minimum of resources.

5. EXPERIMENTAL RESULTS

In this section initial experimental results are presented. At
this time we have no results on the simultaneous estimation of
albedo and shape; it is an area of future work. The image
formation model used here assumes constant albedo, and a
point-source Lambertian reflectance function, which was not
approximated. The multi-resolution strategy was used with ~200
sweeps of the image performed at each resolution.

Figure 6 shows results which demonstrate using multiple
images. The renditions shown in (a) and (b) were synthetically
generated from natural terrain, given by a digital elevation map
of an area in upstate New York. Oblique sun angles were
chosen, a) 80°, b) 75°, to test the technique in a shadowed,
non-linear environment. The image (a) light -source is to the left
of the page, image (b) from the bottom, as is the view. The view
angles were a) 0°, b) 70°. The same renditions based on
elevation derived using the shape-from-shading method with
only image (a) are shown in (c) and (d). The renditions using
both the nadir and the oblique view are shown in (¢) and (f).

Next, the technique was applied to actual Viking orbiter
imagery of Mars. We assume negligable atmospheric scattering
and absorption effects, and negligable ambient light. The albedo
p, which scales the Lambertian point-source reflectance
mapping, was estimated as p=i/R(0,0), where p is the mean of
the data histogram. The sun angle is 63°. Fig. 7 (a) shows a

60x60 area containing a crater. The estimated z-map is depicted
in (b). Another example containing the famous Martian "face" is
shown in Fig. 8. Again, the z-map is depicted in (b). In (c¢), a
reconstruction of the image is created by synthetically rendering
the extracted elevation surface under the same lighting conditions
as in the formation of the Viking image. In (d) a synthetic view
generated under different lighting conditions is shown.

6. SUMMARY

A new technique that combines shading and parallax
information from multiple images for 3D surface reconstruction
is presented. It is based on an explicit model which represents
the characterisics of the surface and includes the image formation
process. The method essentially inverts the image formation
processes, specifically, computes the shape of a surface from
one or more images acquired under different viewing and
lighting conditions. The inversion is cast as an optimization
problem that involves computing the expected value of the
elevation surface given the observed images. Experimental
results demonstrate the efficacy of the method using both
synthetic and actual imagery. Specific contributions are: 1) the
derivation of the relationship of a membrane smoothing
constraint in a probabilistic setting with well-known processes,
and the effect of lattice approximations; 2) a probabilistic
optimization strategy that incorporates scale-space continuation
and Monte Carlo estimation, which represents an alternative to
simulated annealing.
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