CONNECTION MACHINE SYSTEM FOR PLANETARY TERRAIN
RECONSTRUCTION AND VISUALIZATION

Mark Carlotto & Keith Hartt
The Analytic Sciences Corp.
55 Walkers Brook Dr.
Reading, MA 01867

ABSTRACT

An interactive system for computing terrain elevation maps and synthetic views of planetary scenes from a
single panchromatic image is described. The system, implemented on an 8192 processor CM-2 Connection
Machine, can generate an alternative view from an original (512 by 512) image in about 20 seconds. The system
uses a shape-from-shading algorithm based on a numerical integration approach for computing relative elevations
from the image and an oblique parallel projection/hidden surface removal algorithm for generating synthetic
renditions of the scene. Both of these algorithms are implemented using scans and execute in constant time for a
given image size. Results from Mars using Viking Orbiter imagery are presented.

1., INTRODUCTION

Scene rendering and animation have become important tools in computer graphics for terrain visualization,
environmental impact assessment, and mission planning. In order to create synthetic views of terrain, a digital image
of the terrain along with its corresponding digital elevation model are required. For most terrestrial applications this
is not a problem given the availability of satellite and aircraft imagery and high resolution (typically 30 meter)
digital terrain elevation data over much of the earth. For other planets like Mars, terrain elevation databases like that
used in JPL's "Mars: The Movie" ! are typically much lower in resolution and are not as readily available.

This paper describes a system that has been implemented on a Connection Machine? for computing
planetary terrain elevation maps and alternative (oblique) views of the imaged scene from a single panchromatic
image. The system uses a shape-from-shading algorithm based on a numerical integration approach3 for computing
relative elevations from the image and an oblique parallel projection/hidden surface removal algorithm for generating
synthetic renditions of the scene. Both of these algorithms are implemented using scans? and execute in constant
time for a given image size.

The organization of the paper is as follows: Section 2 summarizes the key features of the Connection
Machine system and the *Lisp programming language. Section 3 describes the implementation of image restoration
and enhancement, shape-from-shading, and scene rendering algorithms using scans. It also discusses the
implementation of geometric transformations on the Connection Machine which are also used extensively in the
system. Section 4 presents some results from Mars using Viking Orbiter imagery. Section 5 summarizes future
work.

2. THE CONNECTION MACHINE AND *LISP

The Connection Machine (CM) is a data-paraliel computing system containing up to 64K physical
processors which can act like millions of virtual processors. The CM, originally conceived by Hillis2, is built by
Thinking Machines Corporation (TMC). A description of the CM system can be found in Ref. 5. The CM-2
contains 64K bits per physical processor and can perform 32 bit arithmetic at a rate of 2500 MIPs for a 64K system.
The current system configuration at TASC is a 8192 processor CM-2 system with a Symbolics front-end processor
and a frame buffer that allows the contents of the CM to be viewed at rates up to a gigabit per second.

220 / SPIE Vol. 1192 Intelligent Robots and Computer Vision VIII: Algorithms and Techniques (1989)

_ *Lisp, a parallel dialect of Common Lisp, and PARIS, the assembly language of the CM are provided

within the Symbolics software environment. *Lisp6 is based on objects known as parallel variables or pvars which
we shall denote in uppercase letters, e.g., A. Elements of pvars are processors that may be accessed by their cube
address (i.e., relative to the hypercube) or their grid address, a(x,y). Elements of pvars may be signed and unsigned
integers, variable precision floating point numbers, and booleans. The operation (!! a) returns a pvar in which the
scalar a has been broadcast to all processors in the currently selected set. Macros such as *when, *cond, and *if
select subsets of processors. For example the form (*if (=!! A B) (!! 1) (!! 0)) returns a pvar that contains ones in
those elements in which A and B are equal and zeros elsewhere. Functions and macros that operate on all selected
processors in parallel are identified by !! suffixes, e.g., (+!! A B). Reducing operations return a value from the
currently selected set, e.g., (*min A). Relative addressing in the grid is also provided. The form (news!! A -10)
returns a pvar that is equal to A shifted one position to the left.

Scans? involve the application of a binary associative operator @ (e.g., plus, and, or, min, max, or copy)
to the set of elements [ag, ay,..., a1, to produce the set [ag, (ag @ ap),... (ag @ a7 ... ap_1) 1. On the CM, scans
can be performed on pvars along any dimension in either the forward or reverse direction. In addition, they can be
conditioned on other pvars. Fig. 1 provides examples of scan operations. Implementations of shape-from-shading and
scene rendering algorithms using scans are discussed in the next section.

processor number 0 1 2 3 4 5 6 7
value pvar 1 2 3 4 5 6 7 8
plus-scan (left to right) 1 3 6 10 15 21 28 36
segment pvar nil t nil t nil t nil t
segmented copy-scan (right to left) 2 2 4 4 6 6 8 8

Fig. 1 Examples of scan operations

source address destination

a) Schematic of pref!! operation. The address pvar contains source addresses. Collisions due to multiple
reads occur if a source element is written to more than one destination.

source

address

destination

b) Schematic of *pset operation. The address pvar contains destination addresses. Collisions due to
multiple writes occur if a destination element is read from more than one source.

Fig. 1 Interprocessor communication operations used for geometric transformations

SPIE Vol. 1192 Intelligent Robots and Computer Vision VIil: Algorithms and Techniques (1989) / 221

Prefl! and *pset are interprocessor communication operations (Fig. 1). The form (pref!! A B) returns a pvar
C that contains the value of A obtained from the processors addressed by B. The form (*pset A B C) copies the value
of A and wwrites it as the value of B in each processor referenced by C. Collisions can occur when more than one
output processor tries to read from the same input processor, or more than one input processor tries to write into the
same output processor. The CM automatically handles collisions (several options are available to the user) at the
expense of memory and/or speed. Pref!! and *pset are used to implement coordinate transform operations and are
discussed further in the next section.

3. TERRAIN RECONSTRUCTION AND VISUALIZATION ALGORITHMS

Fig. 2 depicts the scene image formation and generation geometry. The slant and tilt angles of the sun are
o and Tg where the slant is the angle between a ray and the z axis and the tilt is the angle between a ~ay and the x
axis. The image i(x,y) is assumed to have been acquired under an orthographic imaging assumption (i.e., the altitude
of the spacecraft is much larger than the range of elevations and the field of view is small). The synthetic image
i'(x,y) is an obiique parallel projection of the original image mapped onto the derived elevation surface z(x,y). Its
position is specified by slant and tilt angles o, and 1,,.

orthographic view

oblique view i(x.,y)

>

Fig. 2 Planetary imaging geometry. Sun and viewpoint are far enough away from the scene for parallel projection.

The basic processing seauence may be summarizec. as follows. First, the imagery is preprocessed to remove
noise and improve contrast. Next is it rotated so that the sun is along the positive x-axis. The elevations are then
computed from the rotated image. The image and its derived elevation map are rotated towards the viewer (assumed to
lie along the negative y-axis). Finally the hidden surface removal and oblique parallel projection are nerformed. A

222 / SPIE Vol. 1192 Intelligent Robots and Computer Vision VIll: Algorithms and Technigues (1989)

series of successive views can then be generated as shown in the videotape presented at the conference. The following
subsections describe key algorithms following the processing flow in a more or less logical order.

3.1 Image Preprocessing

For the Viking Orbiter imagery used in our system, image restoration and enhancement are required to
remove “salt and pepper” noise due to random bit errors in transmission and to enhance the local contrast for display.
Both can be implemented in terms of local means, which are easily implemented with scans.

Salt and pepper noise is removed by using a Laplacian operator (the difference between an image and its 3x3
local mean) to detect pixel outliers and replacing the value of outliers by their local mean. Similarly, contrast
enhancement is performed by scaling the difference between an image and its local mean. Local means can be
computed in two scans of an image, one for each dimension. In one dimension a plus scan, say left to right, is
performed on the image i(m,n):

m
s(m,n) =Y i(m',n) €))]
m'=0

and shifted versions are subtracted to produce the M by 1 local mean:

ivx 1(m.n) = [s(m+M/2,n) - s(m-M/2,n) 1 /M 2)
Repeating this in the other direction produces an M by N local mean when done.
3.2 Affine Transformation

The shape-from-shading and scene rendering algorithms described in the next two sections require that
imagery be rotated in the x-y plane. Rotations are accomplished by the 2-d affine transformation:

X'=ax+by+c 3)
y=dx+ey+f

where (x,y) and (x',y") are input and output pixel coordinates. Catmull and Smith” describe a two-pass algorithm that
involves accessing the data to be transformed in scan-line order, first in the x-direction and then in the y-direction.
Since this requires twice as many memory references on the CM, a single pass algorithm was implemented directly
using the pref!! operation described earlier. As a result, the transformation is "output driven" as shown in Fig. 3. The
positions of all output pixels are found in the input, in effect solving for (x,y) in terms of (x’,y"). Each output pixel
value is bilinearly interpolated from the values of its four nearest neighbors in the input. This implementation of the
affine transformation executes in an amount of time related to the number of collisions (the number of times output
processors trying to read from the same input processor).

Operation Reads/Processor (average) Time (sec.)
translation 1 14

rotation (45°) 1 2.1

scale by 1/2 1 14

scale by 1 1 _ 1.3

scale by 2 4 4

scale by 4 16 18

Table 1 Example timings for 2-d affine transformation on 5122 image with 8192 processor CM-2

SPIE Vol. 1192 Intelligent Robots and Computer Vision Viil: Algorithms and Techniques (1989} / 223

|
value interpolated /
from nearest neighbors

*

input coordinate space output coordinate space

Fig. 3 Output driven geometric transformation used in 2-d affine warper

3.3 Shape-from-Shading

Shape-from-shading techniques involve the estimation of either the 2-d gradient field of a 3-d surface or the
height of the surface itself from shading information in one or more image. Most approaches to single image
shape-from-shading use either some form of numerical integration or constrained optimization technique. The latter
involves ilerative methods that attempt to produce smooth surface estimates that minimize the difference between the
observed image and a synthetic image derived via the reflectance map. The iterative techniques are typically less
sensitive to noise than the numerical integration techniques, but are very slow and are not discussed further in this
paper. A particularly simple form of the numerical integration approach that involves summing brightness values
along parallel strips in the image is described below.

The reflectance map R specifies the brightness of a point as a function of its gradients, i.e.,
(x,y) = aR(p,q))

where p = dz/dx and q = dz/dy and o depends on the albedo, the solar radiance, and the gain of the imaging system.
Generating a shaded rendition of a 3-d surface in computer graphics involves simply computing brightness values
from gradients. Shape-from-shading attempts to determine gradients, and ultimately elevations, from image
brightness values. Horn notes in an early papers that a linear approximation is adequate for most reflectance
functions when the scene is obliquely lit. For example, Pentland® shows that for oveshead viewing, if the gradients
are small I pl,1q < 1and the zenith angle of the light source is greater than about 30°, the reflectance map for a
Lambertian surface can be approximated by

R(p,q) = (p cosTg Sincg + q SinTg sinGg + cOSTy). S
If the image is rotated so that the light source lies along the x-axis, Eq. 5 can be further simplified as R(p,q) = p

Sinsg + c0SCg, and the elevations can be computed by simply integrating brightness values along parallel strips in
the x-direction:

X
z(x) = 7 +(f) %%(dx. ©)

224 / SPIE Vol 1192 Intelligent Robots and Computer Vision VIIl: Algorithms and Techniques (1989)

It can be shown that the elevation map can be determined, up to a scale factor and an offset by,
m
z(m,n)= z(0,n) + (1/c sinc) ¥, [i(m',n) - ¢t coso] @)
m'=1

where the indices, m and n, are discrete and correspond to the x- and y-axes. The offsets z(0,n) forn = 0,1,... and the
scale factor o are unknown, If the slopes in the direction of the light source can be assumed to be distributed about
zero and the albedo assumed constant over the field of view, then o cosa can be approximated by the mean
brightness using arguments similar to those used by Pentland?. Insofar as the boundary condition is concerned, one
can assume that it is flat or can solve for the values that minimize the mean squared error between rows. These
values turn out to be the average elevations of the strips. Using the latter boundary condition is equivalent to
assuming that the average elevation along each row is the same.

The implementation of the strip integration method by scans can be summarized below. After rotating the
image by -, the average brightness is subtracted row by row by performing a plus scan left to right, dividing the
result in the rightmost processor by the width of the image, performing a copy scan right to left, and subtracting this
result from the image. The actual integration is performed right to left using a plus scan. Row offsets are adjusted by
subtracting the average elevation from each row which requires two more scans. Smoothing between rows may be
performed using another scan in the y-direction to further reduce striping.

3.4 Scene Rendering

Once the elevations have been computed, synthetic views can be created by projecting the original image
(which may be enhanced to improve contrast) onto the elevation surface and reprojecting it to another viewpoint . In
this section, it is shown that oblique views can be generated in constant time using scans.

Let i(m,n) and z(m,n) be the image and corresponding elevation surface rotated so the viewer is below (i.e.,
along the negative y-axis). If the viewer is at the horizon and is far enough away for a parallel projection to hold,
only those portions of the scene whose ¢levation

z(x,y) > max { z(x,y") } ®
y'<y

will be visible. This is a trivial hidden surface computation that can be performed with a max scan bottom to top on
the elevations, followed by a comparison of this result with the original elevations. The more general situation of a
viewer located at an angle ¢,, with respect to the zenith can be reduced to the above case by rotating the elevation
surface:

z'=y cosdy + zsind,, . 9

As the viewing angle moves towards the zenith, more of the scene will be visible. The visible pixel values are then
mapped via parallel projection onto the viewing plane by the transformation

y: =y cosdy + zsing,, (10
X' =X.

This transformation is "input driven” and is implemented using *pset as shown in Fig. 4. Since the hidden surface
algorithm removes those pixels which would otherwise write over the visible pixels in the output plane, no
collisions in writing occur. However, not every output processor will be set and so the output image must be
interpolated along the y-direction. This is done with two final scans in the y-direction, top to bottom and bottom to
top.

SPIE Vol 1192 Intelligent Robots and Computer Vision VIIi: Algorithms and Techniques (1988) / 225

input coordinates

output coordinates I

Fig. 4 Input driven geometric transformation used in parallel projection algorithm

4. EXAMPLE

Some sample results produced by the system are presented in Fig. 5. The original image (a) isa 512 by 512
region extracted from a raw Viking Orbiter frame. The three oblique views, (b) through (d) were generated in less
than a minute from this image. A view of the elevation surface derived from the single image shape-from-shading
algorithm is depicted in (e). An oblique view from a similar position is shown below in (f).

5. SUMMARY

An interactive system, implemented on a CM-2 Connection Machine, for computing terrain elevation maps
and synthetic views of planetary scenes from a single panchromatic image was described. Plans are to integrate a
more general planetary terrain reconstruction algon'lhmlo that combines shape-from-stereo and shape-from-shading
on the Connection Machine system. These systems will provide the planetary community with effective tools to
support geological studies, mission planning (e.g., for the Mars Rover), and terrain mapping applications.

REFERENCES

1. K. Hussey, Mars: The Movie, Digital Image Animation Laboratory, JLP, Pasadena, CA. 1988.

2. W.D. Hillis, The Connection Machine, MIT Press, Cambridge, MA, 1985.
3. B.K.P. Hom, "Understanding Image Intensities," Artificial Intelligence, Vol. 8, pp 201-231, 1977.

4. G. Blelloch and J.J. Little, "Parallel Solutions to Geometric Problems on the Scan Model of Computation,”
Technical Report, AIM-952, MIT Al Laboratory, Cambridge, Ma, 1987.

5. L. W. Tucker and G. G. Robertson, "Architecture and Applications of the Connection Machine," Computer,
Vol. 21, No. 8, August, 1988.

6. *Lisp Reference Manual (Version 5.0), Thinking Machines Corp., Cambridge, MA, Sept. 1988.

7. E.Catmull and A. R. Smith,” 3-D Transformations of Images in Scanline Order," Computer Graphics, Vol.
14, No. 3, July, 1980, pp 279-286.

8. A.Pentland, "The Transform Method for Shape from Shading," Technical Report 106, MIT Media Laboratory,
Cambridge, MA, July, 1988.

9. A Pentland, "Local Shading Analysis," IEEE Trans. PAMI, Vol. 6, No. 6, pp 661-674.

10. K. Harit and M. Carlotto, "A Method for Shape-From-Shading using Multiple Images Acquired Under Different
Viewing and Lighting Conditions," Proc. I[EEE Comp. Vision and Patt. Recog. Conf., pp 53-60, June, 1988.

226 / SPIE Vol. 1192 Intelligent Robots and Computer Vision VIIl: Algorithms and Techniques (1989)

()

Fig. S Results obtained using Viking Orbiter imagery of Mars.’

SPIE Vol 1192 Intelligent Robots and Computer Vision VIIi: Algorithms and Techniques (1989) / 227

Fig. 5 Results obtained using Viking Orbiter imagery of Mars.

228 / SPIE Vol. 1192 Intelligent Robots and Computer Vision VIII: Algorithms and Techniques (1989)

-
Fi 1 t
1 T {
1 an T [
17 { H r
Fu11aN [
Y7L 1 iy
. T -
s atemn 01 LUSRAATIEN SOl
. A *Ee A 1
5 y
kt A 1 L
s AR o) t r
T 1+ r
H AN1Y T
H)
4R = ot 1 o
> TR
A AHHH i
R U L
4y RS il r
I T L
ranl 3
T r
) T . ULA
T TR T [
T t 1 IR (114U RY [
7 T T L
< rane L
T Aty L
“ : HEHET
RV ALERLS O 3 r
t HHE AR e r
Nl Wil T T ”
yar i IHLUL N X (R W1 r
H ! TR LI T [
LA Wi VESw LuENRURIRire r
12277 7 3T VERNT 1 LHANRYY 3
Yo7 111 T8 1! (I -
L LI KT 11 M TE8 T
LY 7 T/ il It A\ 1T L
HZ 777 777 gt UL A1'ES 5160 HH AT r
777717 1 1 1 T L
Y7 7 7 777 T 1 X iE1 LON! T t L
27T T T I 01,4014 T [
)l LIZ D TeTT 1 \ 1477 19.918] L
FAVAS R NGOG | T AU [
[erwsmEisians et TR ETT
hliwrssainn; 16 R18-81 T
Y7z J 10T 19 ¥é 1 1 T
I a e ! T 10 HT
AR TN 1 T I T
\BRUNRRYNIFFEIN (81014 Il g
NRRRmRLE LI 7
[(ERA MR TE N a AN i) f
AGSEECmY| LY r
U T) §
J A A VA LY T I &
O
AN AR MEAALY by -+
AR
A AR 1 S
j e BB AR REW L ¢ 4
LRSS N T 1
A 1! 1 1
L aumuy 7 4
+ 7 111
T 18115 KNS r
iaF Sim e b RNE! Sal :
(@81 EENacan t AL [
IR aea o181l i AT
ISE 86 911:() a7
(IR E g4 T 1T f 1l
PR SM(N. 01 8i¢ 1084 Tt I Sa
I T 1 il WA
Tt + “T A T
I0:0 SIFENE 0] T
}i Efommy (4a) TI7
IR RVIN TIPS 1T 3 AFET
NI T T AL W19
1 TR T I
17 7 {
! AWML
) v L
7 ¢ A a m
p LY I H 18
HAS IO T ::.T
4 H
HHHHAA, I 4 1
IE iremiti I o
RIS 17 L
g R4 L
r.aay IR N Ay L
Lx P :::.]
74V AN/ EIIN IR0 QRN) LW IS Ay AR
%\N\ e T Tt LY
7P S VNN T (a (R ining] y AR S T
R (LH R I =t -1 AUy
AUSINA DD Enw WA -|_C|r: //rAf, Y ﬁ] H
RisiaSan HHHHA i3
AER D IR -
ST n_w:w-:xw.: /wdﬁa
t 110) 1 [
T
ST
LU Legts,

©

Fig. 5 Results obtained using Viking Orbiter imagery of Mars.

SPIE Vol 1192 Intelligent Robots and Computer Vision VIl: Algorithms and Techniques (1989) / 229

