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ABSTRACT

An approach to pattern classification
based on relative constraints in a discrete
relaxation framework is described.
Classical pattern classification techniques
partition feature spaces into disjoint
decision regions where thresholds are
absolute, i.e., fixed numerical quantities.
The approach described here defines pattern
classes relative to one another and so
results in decision boundaries that depend
on the data being classified. Such a
formulation leads to a classification
scheme based on finding unambiguous
labelings (assignments of single classes to
objects) using a discrete relaxation
labeling algorithm. Classes are defined
exclusively in relative terms, using fairly
weak constraints. As a result, there are
not many locally incompatible hypotheses to
eliminate by Waltz filtering. A ranking
scheme is developed which orders hypotheses
so0 that unambiguous labelings can be
quickly found through depth-first search.
When an unambiguous labeling does not
exist, classes can be assigned by picking
the most compatible hypotheses. Results of
work in progress in classifying Landsat
multispectral imagery are presented. The
ability to recognize basic surface material
categories in two scenes using relative
descriptions of surface material classes is
demonstrated.

1.INTRODUCTION

Classical statistical pattern
classification techniques use fixed
numerical thresholds (e.g., derived from
training data) to classify unknown data.
Although such techniques may be optimal
when the unknown data are similar to the
training data, classification performance
may degrade if significant variability is
encountered. An alternative is to use
heuristic techniques and knowledge that is
more general and qualitative in nature, but
possibly inconsistent and incomplete. The
present work addresses the problem of
classifying patterns in domains where there
is significant variability in the data. The
approach is based on the use of relative
constraints to define the classes of
interest with respect to one another and
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discrete relaxation to apply the
constraints to the data to be classified.
By defining pattern classes relative to
each other, the decision boundaries depend
on the data being classified and so can
adapt to changes in the data. The
application currently under investigation
is the classification of surface materials
in Landsat multispectral imagery.

The organization of the paper is as
follows: Section 2 reviews previous work in
discrete relaxation labeling and related
work in multispectral classification.
Section 3 describes a discrete relaxation
algorithm for classification that uses
relative constraints. Several examples are
presented to illustrate its use in Section
4. In Section 5 early results in using the
technique to classify surface material
categories in two Landsat scenes are
presented. Future work is outlined in
Section 6.

2. PREVIOUS WORK

Relaxation and constraint labeling
techniques can be traced back to early work
by Waltz [1]. The problem addressed was
that of interpreting line drawings of 3-D
objects using knowledge about the
compatability of line junctions. Feldman
and Yakimovsky [2] developed a
semantics-based region analyzer which
segmented and labeled images of simple
scenes using constraints such as "doors are
square”, "pictures are hung on walls", etc.
Tenenbaum and Barrow [3] developed an
interpretation-guided segmentor similar in
concept to the one above based on a Waltz's
filtering ideas. Rosenfeld, et al [4]
formalized the theory of discrete, fuzzy,
and probabilistic relaxation methods.

The use of statistical pattern
recognition techniques in remote sensing is
well known [5]. The problem of how to
extend "spectral signatures" derived in one
image set to another has received
considerable attention. The multiplicative
and additive signature correction technique
(MASC) developed by Henderson [6) matches
clusters in an unknown data set to those in
a known one. Related work by Fischler and
Elschlager ({7] addressed the problem of
matching graphical structures using local
information. One application was matching



the feature spaces of two terrain scenes
and is similar in some ways to cluster
matching.

3. CLASSIFICATION BY
DISCRETE RELAXATION LABELING

Let A = {ay, ajp,..., ay} be the set
of objects we wish to classify, Q = {wq,
Wy, ..., Wg} be the set of possible labels
or classes for the objects, and @ = {¢q,

¢, .-., Oy} be the set of properties defined
over the set of objects. The value of the
mth property of the nt object is denoted
an(dy) - Although we do not refer directly
to the numerical values of classes, the
notation mk<¢mé > O () means that in
terms of the mth property, the kth class is
strictly greater than the k'tl class. The
set of hypotheses, H = A x Q= {h;},
represents all possible pairings of objects
and labels; hpy is the hypothesis that
object a, is a member of class ®,. R = @ x
Q x Q::{rmkk.) is the set of constraints
where rppys implies @y (¢p) > @y (¢) for k
# k'. Since rpyy is the same as —rpy oy,
there are at most MK(K-1)/2 unique
constraints, some of which are redundant as
they may be implied by others, i.e.,rmklkz
and Tmkyk3 — Tmkiks. If for the mtl
property, there is no ordering relation
between the k'R and k' classes, the
corresponding constraint rpy. is said to
be undefined. If the two classes do not in
any way depend on one another, all Trkk '
form=1,2,..., M are undefined.

Let Afhpny, hpie] denote the
compatability of hypotheses hpy, and hpips.
Two hypotheses are compatible

(i) if all {rpkk'} are undefined, or

(ii) if n # n' and k = k', since two
objects may belong to the same class,
or

(iii)if n = n' and k # k, since an object
may belong to more than one class, or

(iv) if n = n' and k = k', since a
hypothesis is compatible with itself,
or

(v) if for each constraint in {rpy,+} that
is defined, a,(®y) > ay: (¢,) since aj

is associated with ®y, aj: is
associated with ®y: and rpyy+ requires
that @y (&) > Op . (¢) .

(i) is the case where there are no
contraints between the classes; (ii) is
possible in situations where the number of
objects is greater than the number of
classes; (iii) is possible during the

initial phases of the labeling process
(i.e., during Waltz filtering); (iv) is the
trivial case; in (v), if any constraint
from the set {rmkk'} is violated, then hpy
and hpiy+ are not compatible.

A labeling is an assignment of classes
to objects. A consistent labeling consists
of all hypotheses h,), that are compatible
with at least one hpjsrpr n # n' and k # k'.
The process of finding consistent
labelings, termed Waltz filtering,
repeatedly applying constraints to
hypotheses, eliminating hypotheses which
are not compatible with at least one other
hypothesis, until the process converges.
Rosenfeld, et al [4] proved that this
process always converges. An unambiguous
labeling assigns only one class or label
per object. Ultimately, we are interested
in finding unambiguous labelings.
Exhaustive search for unambiguous
labelings, e.g., via the tree search
procedure developed by Waltz, can require
the examination of up to K" labelings. In
some domains, unary constraints (e.g.,
"doors are square”) are available and can,
in conjunction with Waltz filtering, be
used to significantly prune the search tree
by eliminating many incompatable hypotheses
at the outset. In other domains where
classes are only weakly constrained
relative to one another, there are few
locally incompatible hypotheses and so
Waltz filtering is not effective in itself
in reducing search.

involves

4. CLASSIFICATION
USING RELATIVE CONSTRAINTS

Fig. 1 shows a distribution of
clusters (a; through ag) in a two-
dimensional feature space. The clusters
represent a possible segmentation of an
image and are defined by two properties:
¢1, brightness (br) and ¢,, greenness (gr).
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Fig. 1 Distribution of clusters in
brightness-greeness feature space
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Fig. 2 Directed graph representation
of constraints for water (W), trees
(T), sparse vegetation (V), and bare
soil (S).

(The use of brightness and greenness
features are discussed in Section 5.)
Initially, we assume that four classes {®j,
Wy, ®3, W} are present in the image: water,
bare soil, sparse vegetation, and trees.

Fig. 2 is a directed graph representation
of these four classes in terms of only
relative constraints. For example, the top
arc represents the constraint ry5;, "bare
soil is brighter than water”. Fig. 1 also
shows a labeling that satisfies all the
constraints in Fig. 2. Since it assigns one
class per cluster, it is an unambiguous
labeling. Qualitatively, unambiguous
labelings will be found only if the
"structure” of the feature space matches
the structure implied by the constraints.
The dotted lines in Fig. 1 are the decision
boundaries (parallelpipeds in higher
dimensional spaces) induced by the
constraints in Fig. 2. Their relationships
to one another are defined by the
constraints, although their numerical
values depend on the data being classified
(as can be readily verfied by distorting
the coordinate axes).

Fig. 3a is a search tree for the above
example and contains 45 = 1024 paths, each
of which corresponds to a labeling. The
dotted lines in the figure correspond to
the labelings that are eliminated by Waltz
filtering. For this example, Waltz
filtering eliminates 2 out of 20 possible
hypotheses, which given the ordering of the
hypotheses, reduces the number of candidate
labelings by 50%.

Fig. 3a Hypothesis tree for depth first search for unambiguous
labelings for clusters in Fig. 1 and constraints in Fig. 2.



An even more effective way to reduce
search is to order hypotheses by their
compatibility and to visit those hypotheses
first. Table 1 lists, for each of the 18
hypotheses hpy which survived Waltz
fltering, a score which equals the number
of other hypotheses hpiyr that were
incompatible. If a hypothesis is compatible
with every other hypothesis in H, its score
is zero. In each row the most compatible
hypothesis (lowest score) is shown in bold
face.The heuristic is that unambiguous
labelings will contain hypotheses with high
compatibilities (low scores), and
conversely, labelings consisting of
hypotheses with low scores are likely to be
unambiguous ones. The hypotheses which
belong to the unambiguous labeling in Fig.
1 are marked with asterisks in Table 1. In
this particular example, if the tree is
built such that the most compatible

Classes
Clusters W T v S
1 0* 8
2 3* 7 8 7
3 7 0 6 10
4 8 5 5* 6
5 8 8 5 3*

Table 1 - Hypothesis table for clusters in
Fig. 1 and constraints in Fig. 2. Most
compatable assignment in bold face; *
denotes unambiguous labeling.

hypotheses are examined first (Fig. 3b),
the correct labeling is found immediately.

Consider now a second example. Fig. 4
shows the five clusters from the previous
example plus a sixth. If we try to label
all six clusters in Fig. 4 using the
constraints in Fig. 2, no unambiguous
labeling exists (Table 2). If a fifth
class, clouds, and four additional
constraints relating clouds to the other
classes are added (namely, clouds are
brighter than water, trees, sparse
vegetation, and bare soil), the correct
unambiguous labeling is obtained (Table 3).
It is worth noting however that in this
example, the hypotheses which belong to the
unambiguous labeling are not always the
ones with the lowest scores. Thus, although
searching through the most compatible
hypotheses provides a good starting point,
some backtracking may be needed.
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Fig. 3b Search tree ordered so that most compatible hypotheses are considered first,
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Table 2 - Hypothesis table for clusters in
Fig. 4 and constraints in Fig. 2. No
unambiguous labeling exists.

Classes

Clusters \ T v S C

1 0* 9 14 14

2 6* 11 12 11 11

3 9 3* 9 26 15

4 12 10 10* 11 7

5 13 14 11 9* 3

6 14 9 14 o*
Table 3 - Hypothesis table for clusters in

Fig. 4 and constraints in Fig. 2 plus ones
for clouds (C). Note that the hypotheses in
the unambiguous labeling are not always the
most compatable.

5. MULTISPECTRAL
IMAGE CLASSIFICATION EXAMPLE

The primary motivation for the present
work is multispectral classification,
specifically, the classification of surface
materials by their spectral signature
alone. The classical approach described by
Swain [5]) assumes that the surface material
classes (SMCs) of interest are represented
by multi-variate normal distributions, and
involves computing the class conditional
statistics from a training data set and
using the empirically derived class-
conditional models to classify an unknown
data set. Here, we segment the imagery into
clusters that are assumed to be multi-
variate normal but apply only relative
knowledge to classify the clusters.
Segmentation is accomplished via
unsupervised clustering which tends to
"over-segment” the data. Clusters are
represented by their brightness and
greenness values derived using the TM
tasseled cap transform [8]. Taselled cap
and similar physically-based
transformations provide scene independent
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measurements of significant physical
properties such as soil brightness,
greenness (related to the amount of biomass
present), and wetness (relative moisture
content). The availability of such measures
allows us to represent SMCs in relative

Initial experiments in classifying
Landsat Thematic Mapper (TM) imagery have
been performed. In one, two scenes, about
512x512 pixels in size and acquired in the
same pass of the Landsat satellite were
processed. Fig. 5a shows the 8 clusters
extracted from the first image and hand
labeled which we use as "ground truth". The
second scene was then classified using a
set of constraints derived from this first
scene by the precedure described below.
Five unambiguous labelings were found and
were very similar to one another, e.g.,
clusters labeled trees in one were labeled
brush in another. The labeling with the
lowest net score (highest compability) is
shown in Fig. 5b. If we use this labeling
as the ground truth for the second scene,
and derive a set of constraints for
classifying the first scene, an identical
set of constraints is derived. Applying
these constraints to the first scene
produces six unambiguous labelings.
Interestingly enough, the one in Fig. 5a is
the one with the lowest net score. Thus,
even though the two feature spaces in Fig.
5 are different, a single set of relative
constraints can be used to classify them.

In the above example, constraints were
derived from the hand labeled clusters
using a simple deductive procedure.
Initially, assume that all rpyyxr are true
which implies @y (¢y) > @k () for all k,
k', and m. Next, for all pairs of clusters,
ap and ap» that belong to classes Wy and
Wi+ respectively, if any ap (dy) < apr ($p)
then the corresponding rpygyk+ is false. This
is done for all pairs of classes and for
all properties. Finally, if rpyk' and rppryg
are either both true or both false, they
are not defined, otherwise the one that is
true is retained. Fig. 6 depicts the
constraints derived by this method for the
above example as a directed graph.

Another experiment performed on two
sets of imagery acquired by different
sensors (Landsat TM and an aircraft TM)
over different areas at different times has
demonstrated the ability to identify
selected surface materials common to both
scenes. These results will be presented in
a future paper. The results obtained to
date suggest that because relative
constraints are weak they are more
"extendable” but may require supervision to
guide their use in unknown situations.
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6. SUMMARY

Additional multispectral data sets are
being processed to assess the usefulness of
the technique. The goals are to determine
the extent to which relative spectral
information (class to class) can be used
for surface material classification and to
determine the tradeoffs between specificity
and extendibility. Earlier work addressed
the use of relative spectral information
(band to band) [9). Future work may combine
the two techniqgues. The limited resolution
of Landsat TM and the lack of structure in
such imagery limits the use of geometrical
and spatial knowledge present in systems
developed by Nagao and Matsuyama [10] and
Hanson and Riseman [11] although there use
is under consideration. Previous work [2,3]
has already demonstrated the use of
geometrical and spatial information for
scene interpretation. The work reported
herein is potentially applicable to
autonomous land and remotely piloted
vehicles that use color or multispectral
imaging sensors.
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