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Histogram Analysis Using a Scale-Space Approach

MARK J. CARLOTTO

Abstract—A new application of scale-space filtering to the classical
problem of estimating the parameters of a normal mixture distribution
is described. The technique involves generating a multiscale descrip-
tion of a histogram by convolving it with a series of Gaussians of grad-
ually increasing width (standard deviation), and marking the location
and direction of the sign change of zero-crossings in the second deriv-
ative. The resulting description, or fingerprint, is interpreted by relat-
ing pairs of zero-crossings to modes in the histogram where each mode
or component is modeled by a normal distribution. Zero-crossings pro-
vide information from which estimates of the mixture parameters are
computed. These initial estimates are subsequently refined using an
iterative maximum likelihood estimation technique. Varying the scale
or resolution of the analysis allows the number of components used in
approximating the histogram to be controlled.

Index Terms—Estimating the parameters of a normal mixture, fin-
gerprints, histogram analysis, image segmentation, mode finding, scale-
space filtering.

[. INTRODUCTION

Recently, the idea of filtering across a continuum of scales using
Gaussian filters has been explored for the purpose of constructing
symbolic descriptions of signals [14] and shape [1]. Stansfield [11]
motivated by the use of multiple Gaussian filters for edge detection
[7]) observed that the zero-crossing locations of 1-D signals traced
out contours in a 2-D space later termed scale-space by Witkin.
Stansfield alluded to the possible use of Gaussian filters for con-
structing multiscale representations of 1-D signals. Witkin [14]
actually developed a multiscale representation based on ternary
trees and described a methodology for extracting the perceptually
salient features of the signal. Babaud es al. [2] proved that the
Gaussian is the only linear filter which has the desirable property
of not creating zero-crossings as the scale decreases. (This allows
the signal to be represented, for example, in terms of a ternary
trec.) Yuille and Poggio [12] showed that 2-D signals (images)
smoothed by Gaussian filters have similar properties. They also
proved that the positions of zero-crossings in the second-derivative
capture all the information that is nceded to reconstruct the signal
up to a scale factor plus a constant and harmonic term [13].

Multiscale descriptions in terms of the location of zero-crossings
of the derivatives of the signal in scale-space have become known
as fingerprints. By using fingerprints. cvents can be derected at
coarse scales and localized by tracking zero-crossing contours in
scale-space down to fine scales. For cxample, if onc is interested
in extracting peaks and valleys in a 1-D waveform, zero-crossings
in the first derivative can be detected at a scale where only the more
significant variations in the waveform remain. The detected zero-
crossings can then be tracked down to a lower scale where the pre-
cise location of the peak or valley can be determined.

In this correspondence, an application of scale-space filtering to
the problem of approximating a signal, in this casc the frequency
distribution or histogram from a random process, by a sum or mix-
ture of normal distributions is described. Analysis of the fingerprint
of a histogram indicates that the histogram may be constructed up
to, or at, any scale by a sum of normal distributions. Since the tails
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of the distributions will generally overlap, localization by tracking
zero-crossing contours down to fine scales is not sufficient to ex-
tract the individual components. Instead, initial estimates of the
parameters which determine the underlying mixture are computed
from the locations of the zero-crossings at the scale in which they
are detected, and are refined using an iterative technique. The ap-
proximation of the histogram which results is thus scale-dependent
in the sense that the number of components used is related to the
scale at which the histogram was analyzed.

The organization of this paper is as follows. Section Il examines
simple mixtures of univariate normal distributions and explores, in
particular, how the locations of zero-crossings in the first and sec-
ond derivative relate to the parameters of the mixtures. In Section
[11, fingerprints of normal distributions are analyzed and a method
for approximating histograms at any scale by normal mixtures is
described. Estimation of the mixture parameters themselves is then
addressed in Section IV. Experimental results are presented in Sec-
tion V. Section VI concludes with a discussion of the current lim-
itations of the method and plans for future work.

[T. ZERO-CROSSINGS IN THE DERIVATIVES OF NORMAL
DISTRIBUTIONS

The univariate normal distribution N(u, @)
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is completely specified by its mean p and standard deviation ¢. The
first and second derivatives of the Gaussian are given by
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A zero-crossing occurs in the first derivative, i.e., the sign of the
slopc changes from positive to negative. at the peak (which is also
thc mean) of the original distribution. Zero-crossings in the second
derivative are points of inflection in the original distribution and
occurat 4 + o.

The two component normal mixture is given by
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Three cases illustrating the different ways in which a two compo-
nent mixture can manifest itself are shown in Figs. 1-3. In Fig.
1(a), the two component distributions are far enough apart so that
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Fig. 1. Two-comnonent normal mixture and derivatives (distinct peaks).
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Fig. 3. Two-component normal mixture and derivatives (single peak).

two distinct peaks are observed. The three zero-crossings in the
first-derivative [Fig. 1(b)] correspond to the two peaks and one
valley in Fig. 1(a). In the second derivative [Fig. l(c)], pairs of
zero-crossings occur on either side of the peaks. According to (4),
if the component densities are far enough apart, the peaks will be
close to the means and the distance between turning points on either
side of a peak will be approximately equal to twice the standard
deviation.

In general, the individual components in the mixture will not be
well-separated as in Fig. I, and the means and variances will not
correspond to the locations of zero-crossings in the first and second
derivatives. For example, in Fig. 2(a) the standard deviation of
each density has been increased, causing the smaller of the two
peaks and the valley to disappear. A single peak remains, produc-
ing one zero-crossing in first derivative [Fig. 2(b)]. However, the
presence of the second, smaller mode still manifests itself as a pair
of zero-crossings in the second derivative [Fig. 2(c)]. In Fig. 3(a)
the standard deviations are further increased so as to cause the larger
mode to completely dominate and obliterate the smaller mode. One
zero-crossing occurs in the first derivative [Fig. 3(b)] and only two
zero-crossings occur in the second derivative [Fig. 3(c)].

The location of peaks, valleys, and turning points are plotted in
Fig. 4(a)-(c) for the distributions in Figs. 1-3. The two modes
observed in Fig. | produce two pairs of turning points (a). Al-
though only one peak is present in Fig. 2. two pairs of turning
points remain (b). Only in Fig. 3 does the larger component com-
pletely dominate the smaller (c). Therefore. it appears that if the
components are spaced far enough apart to be resolvable [5] each
will give rise to a pair of zero-crossings.
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Fig. 4. Zero-crossings in previous three mixtures (*‘p’’—peak, *‘v’’—val-
ley, ““+ '’ —plus-to-minus sign change in second derivative, ** ~""—mi-

nus-to-plus sign change in second derivative.

[II. FINGERPRINTS OF |-D SIGNALS

The apparent similarity in structure between Fig. 4 and slices
from fingerprints of 1-D signals suggests a possible use of scale-
space filtering in decomposing histograms into sums of normal dis-
tributions. In the following subsections, a review of scale-space
filtering is provided (Section III-A), followed by an examination
of fingerprints of normal distributions (Section III-B), and the dis-
cussion of an approach for approximating the histogram by a nor-
mal mixture (Section III-C).

A. Scale-Space Filtering

For a continuous signal f(x), Witkin [14] defines its scale-space
image to be

Flx, 1) = f(x) * g(x, 1)
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where *‘*’" denotes convolution. A slice through the scale-space
image at 7 = 7 is the signal smoothed by a Gaussian of standard
deviation 7. Fig. 5 shows a 1-D signal (a) and its scale-space im-
age (b). The scale varies from onc to 100 and is plotted logarith-
mically in (b).

Fingerprints are constructed by plotting the locations of zero-
crossings (usually, of the second derivative of F’) in scale-space.
Yuille and Poggio {13] have shown that fingerprints capture all the
information that is needed to represent the signal up to a scale fac-
tor plus a constant and harmonic term. It has also been shown that
signals smoothed by convolution with Gaussians create fingerprints
having nice topological properties [2], [12]. For one, zero-cross-
ings are never created as the scale increases. Witkin [14] developed
a symbolic description based on ternary trees which results from
this topological property of fingerprints.

For the purpose of analyzing histograms, we shall be interested
in the location of zero-crossings in the second derivative

2
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and the sign of the third derivative at the zero-crossings; i.e.,
whether the sign of the second derivative is changing from plus to
minus (Fyxx < 0) or minus to plus (Fxxx > 0). Fig. 5(c) shows
the sign of the second derivative of the scale-space image in Fig.
5(b), where white (black) denotes Fyy = 0 (Fyy < 0). Zero-cross-
ings in the second derivative of a waveform are the positions where

x -————
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Fig. 5. (a) Histogram. (b) its scale-space image. and (c) the sign of the
second derivative.
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®
Fig. 6. Fingerprint of a normal distribution.

the curvature of the waveform changes sign. Sections of the signal
over which Fyy < 0 are convex, while sections over which Fyy >
0 are concave. If Fyyy < O at a zero-crossing, the zero-crossing
will be labeled a lower turning point, and if Fyyy > 0 at a zero-
crossing, the zero-crossing will be labeled an upper turning point.
Thus for the normal distribution in (1), the lower turning point is
to the left of the upper turning point. If the distribution is negative,
the turning point order is reversed.

B. Fingerprints of Normal Distributions

The impulse response of the scale space filter g(x, 7) is given by

1 —x?
NP {?} . N
A normal distribution thus produces the tfollowing response
1 —( =’
N P oZ)J ®

where p is the mean and ¢ is the standard deviation. The fingerprint
associated with the distribution is shown in Fig. 6 and resembles a
funnel whose width is approximately equal to 27 at high scales and
20 at low ones. The fingerprint is centered at x = u. Down (up)
pointing arrows denote lower (upper) turning points. For a negative
distribution, the direction of the arrows is reversed (i.e., the lower
turning point is to the right of the upper turning point).

The fingerprint of a five component mixture [Fig. 7(a)] is shown
in Fig. 7(b). The parameters of the mixture are listed in Table L.
At large scales, the response is dominated by the funnel (1). As 7
decreases, zero-crossings appear in pairs as expected. In particular,
as 7 decreases a pair of zero-crossings appear in the form of an arch
closed at the top (2). The arch forms inside of the funnel with the
direction of the arrows reversed, indicating that the lower turning
point is to the right of the upper turning point and signifying the
presence of a negative distribution. As 7 further decreases, three
more pairs of zero-crossings (3-5) form. It is interesting to note at
this point that even though the signal represented in the fingerprint
is a sum of five positive Gaussians, a top-down decomposition of
it suggests that is can be constructed at certain scales by sums of
positive and negative Gaussians.

A slice from Fig. 7 just below the point where the third pair of
zero-crossings appears is shown in Fig. 8. The pairing of zero-
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Fig. 7. (a) Five-component normal distribution and (b} its fingerprint.

TABLE ]
EXAMPLE FIVE-COMPONENT MIXTURE

Mode | Probability Mean Standard Deviation

1 0375 100 10
2 0.125 130 10
3 0.125 150 5
4 0250 160 5
5 0125 170 5

crossings obtained from top-down analysis of the fingerprint is
shown in (a). The five alternate pairings (b) were obtained by con-
sidering all ways to pair upper and lower turning points. (For K
pairs of zero-crossings there are K'! possible pairings.) All pairings
in (b) except for the bottom one imply a decomposition of the sig-
nal into both positive and negative components. (Pearson [8]
showed that there are at most two ways to decompose a two com-
ponent mixture, one consisting of a sum of two positive compo-
nents, the other consisting of one positive and one negative com-
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Fig. 8. Possible pairings of zero-crossings have the opposite sign.

ponent.) The six pairings in Fig. 8 represent the six possible
solutions to (i.e., decompositions of) the three component prob-
lem. Only the last one represents a decomposition of the signal into
strictly positive components. (Note that there is only one such de-
composition into strictly positive components.) Thus to detect pos-
itive modes in the histogram, the fingerprint is parsed left to right
(i.e., in the direction of increasing x) at a particular scale. Each
pair of zero-crossings detected is associated with a positive distri-
bution present at that scale.

C. Interpreting Fingerprints of Histograms

The fingerprint of the histogram in Fig. 5 is shown in Fig. 9. It
contains the same kinds of features found in the fingerprints in the
preceding section, namely a funnel which dominates the fingerprint
as large scales, pairs of zcro-crossings of opposite sign change
forming as the scale decreases, and alternations of the sign change
in going left to right. (Arrows denoting the direction of zero-cross-
ings were omitted from this figure for clarity.) The similarity in
structure is due to the fact that smoothing a signal by convolving
it with a Gaussian produces a result which is a superposition of
Gaussian responses (i.e., a sum or mixture of normal distribu-
tions). This then suggests that the histogram may be constructed
top-down by adding positive and negative Gaussians together up to
any scale, or alternately, at any scale.

Fig. 10 shows an earlier [Fig. 5(a)] histogram (a) approximated
at three scales (b)-(d). (The three distributions (b)-(d) are obtained
by the procedure described in the next section.) The three scales
chosen are indicated in the fingerprint in Fig. 9. It is apparent in
Fig. 9 that as the scale decreases (the histogram is smoothed by
decreasing amounts), additional components, i.e., pairs of zero-
crossings, form in the fingerprint. At 7 = 5, K = 8 pairs of zero-
crossings (modes) are detected. This approximation captures most
of the major features of the histogram, e.g., the lower mode cor-
responds to shadows in the image over which it was computed, and
the higher mode corresponds to specular areas. By further increas-
ing 7 in (¢) and (d), the number of modes detected, and correspond-
ingly, the accuracy of the resulting approximation, decreases.
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Fig. 10. Analysis of histogram (a) at three resolutions (b)-(d).

IV. ESTIMATING THE PARAMETERS OF A NORMAL MIXTURE

Redner and Walker [9] provide an overview of various methods
developed for estimating the parameters of mixture densities. Many
are concerned with the problem of determining the parameters of
normal mixtures. The original work by Pearson [8] addressed the
problem of determining the parameters of two univariate normal
densities. His approach, known as the method of moments, equates
expected values to sample moments; e.g., in the two component
case, five parameters must be determined by solving a set of five
(generally) nonlinear equations. Due to the computational com-
plexity of this approach, evident even in the two component case,
many other methods (both direct and iterative) have since been de-
veloped.

A graphical solution for the parameters of a normal mixture in



126 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. PAMI-9, NO.

cases where the component distributions arc well-separated was de-
scribed by Bhattacharya [3]. His approach. adequate for the situ-
ation illustrated in Fig. 1, would fail in the situations depicted in
Figs. 2 and 3. In all three distributions, the ability to resolve the
two modes is dependent on the variance, the distance between the
means, and on the relative strengths of the components. Sammon
{10] developed a method for resolving individual components based
on a deconvolution approach. Its applicability is limited to cases
where the individual components have approximately the same var-
iance.

In general, to determine a K components normal mixture,
(3K — 1) parameters must be estimated. A dircct method for com-
puting these parameters as a function of the location of zero-cross-
ings is to form a system of (3K — 1) simultaneous nonlinear equa-
tions. Consider determining the parameters which make up the
mixture in Fig. 2. If z, is the location of the one zero-crossing in
the first derivative, and z, through z5 arc the locations of zero-
crossings in the second derivative, one must solve the system
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for py, ny, 42, 0y, and o5, where p, = | ~ p,. Thus, even for K =

2 the solution is difficult, if not impossible, to obtain analytically.

A two-step approach for estimating the mixture parameters which
overcomes these difficulties is based on computing a rough estimate
of the parameter values from the zero-crossing locations, and then
refining the estimate using an iterative maximum likelihood esti-
mation algorithm. An overview of the estimation process is shown
in Fig. 11. Steps (a) and (b) have already been described. At any
scale, sign changes will alternate left to right. Odd (even) num-
bered zero-crossings will thus correspond to lower (upper) turning
points.

Prior to entering the iterative loop, initial estimates of the mix-
ture parameters are computed from zero-crossing locations in step
(c). Let a, and b, be the locations of upper and lower turning points
fork=1,2, , K. The point halfway between the turning point
pairs (a; + &)/2 is used as an estimate of the mean g,. Half the
distance between turning point pairs (b; — a;)/2 is used as an es-
timate of the standard deviation 6;. The histogram { f(x,)} is par-
titioned into K segments by assigning a bin to the 4th segment if

lﬁ'k - 'xn‘ < |ilj - xn| (10)
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Fig. 11. Overview of parameter estimation procedure.

forj =1, 2, , K and j # k. The fraction of the total area in
each segment is taken as an initial estimate of the relative fre-
quency py.

Given these initial estimates of the parameters which determine
the mixture, an iterative algorithm described in Duda and Hart [4]
can be used to refine the estimates. Specifically, we compute the
parameters © which maximize the probability of observing the dis-
tribution, f(x,), given ©. Upon entering the iterative loop in Fig.
11, the a posteriori probabilities are computed first in step (d) ac-
cording to

P(x ) B

Plax|x) = (D

k§ plelwpy
where
N l —x - IALL-)ZV
Xlwyg) = €X
pllen = e | =5

is the conditional probability distribution for the kth component.
These probability functions are used to compute new estimates in
step (e) according to

(12)

N
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TABLE I1
ESTIMATED MIXTURE PARAMETERS

Mode | Probability Mean Standard Deviation
1 0380 (+16%) 10022 (+02%) 1012 (+1%)

2 0.116 (-72%) 130.14 (+0.1%) 915 (-8%)

3 0093 (256%)  14B68 (08%) 467 (6%)

4 0314 (+256%) 159.83 (0.1%) 579 (+15%)

5 0097 (224%) 17088 (+05%)  4.77 (-5%)

The iteration involves repeating steps (d)—(f) until the means con-
verge (i.e., the magnitude of the difference between successive
means is less than a specified amount). When the iteration termi-
nates, the histogram is approximated by summing the individual
components together:

K 3 r A N2
~ _ Dk - (xn _ /’Lk)
foo) = 2 Vows, P { 27 ] : (14)

It must be pointed out that the maximum likelihood solution is but
one of several solutions possible using the iterative algorithm. Duda
and Hart emphasize the importance of baving good initial estimates
for the mixture parameters in order to ensure convergence to the
correct solution. A key assumption in the two-step approach is that
the initial estimates are close enough to the desired solution for the
iterative system to converge to it. It has been our experience that
if the number of components detected at a particular scale is suffi-
cient to represent the more significant features in the histogram,
convergence to reasonable solutions usually results.

V. EXPERIMENTAL RESULTS

In this section three examples illustrating the use of the histo-
gram analysis technique are presented. In our first example, the
parameters of the five component mixture in Fig. 7 are estimated
using the two-step procedure described in Section IV. The histo-
gram (Fig. 7) is generated by adding together five normal distri-
butions (Table I). Smoothing was not required since the distribu-
tions are ideal. The results of the analysis are summarized in Table
II. The means all converged to within | percent of their true value.
A positive bias in the relative frequencies of the larger, better sep-
arated components is also evident. The considerable overlap in the
distributions resulted in larger errors in the relative frequencies and
standard deviations than in the means.

In the second example, a Gaussian noise generator is used to
synthesize two component normal mixtures with known statistics.
The three cases depicted in Figs. 1-3 are considered. For each,
histograms are computed from 10 000, 1000 and 100 noise gener-
ator samples. Results of the analysis using a smoothing factor 7 =
5 are summarized in Table III-V. When the components are well
separated as in Fig. | the estimates are quite close to the true pa-
rameter values for as few as 100 sampies. Even in the situation
where the less dominant mode is partially buried as in Fig. 2, sat-
isfactory estimates were obtained for moderate sample sizes (1000
samples or more) as shown in Table IV. For the unimodal case
depicted in Fig. 3 the analysis technique should, and does, fail to
detect the smaller mode (Table V) when a large number of samples
(10 000 or more) are used. The above suggests that satisfactory
results may be obtained if the modes are well-separated and/or a
large number of samples are used in computing the histograms;
otherwise, spurious peaks may be detected by the technique.

The third example illustrates the manner in which the histogram
analysis technique is used within our Multi-Spectral Image Anal-
ysis System (MSIAS) described in [6]. MSIAS is a knowledge-
based system for classifying surface materials (e.g., vegetation,
water, roads) in multispectral (e.g.. Landsat TM) imagery. A hi-
erarchical classification strategy is used to recursively partition the
image into subclasses. At any node within the classifier, subclas-

TABLE 111
TwO-COMPONENT MIXTURE (DISTINCT PEAKS)

True Probability True Mean True Standard Deviation
09 130 5
0.1 160 5
Est. Probability Est. Mean Est. Standard Deviation
(10,000 samples)
09 130 423
0.1 160 425
(1,000 samples)
09 130 425
0.1 160 452
(100 samples)
09 1294 450
0.1 1614 429
TABLE IV

Two-COMPONENT MIXTURE (BURIED MODE)

True Probability True Mean True Standard Deviation
09 130 10
01 160 10
Est. Probability Est. Mcan Est. Standard Deviation
(10,000 samples)
091 1302 934
009 1605 936
(1,000 samples)
0386 1296 9.08
0.14 154.1 1224
(100 samples)
092 1261 1025
0.05 1602 326
003 1754 188
TABLE V

Two-COMPONENT MIXTURE (SINGLE PEAK)

True Probability True Mean True Standard Deviation
09 130 15

01 160 15

Est. Probability Est. Mean Est. Standard Deviation
(10,000 samples)

10 1330 16.79

{1,000 samples)

091 130.1 1408

008 1574 8.72

001 183.1 636

(100 samples)

0.11 103.7 653

026 1179 201

046 1343 789

0.14 1569 585

0.03 1840 356

sification is performed based either on an analysis of the histogram
of a particular band or on the spectral signature. The histogram
analyzer is used within MSIAS to identify groups of pixels likely
to correspond to surface materials based on their spectral reflec-
tance in a particular band(s).
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Fig. 13. (a) Landsat TM band 4 histogram (b) with componeats due to
water, denser vegetation, and other materials identified.
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Fig. 14. Regions containing (a) the darkest pixels (water) and (b) the
brightest pixels {denser vegetation) extracted by thresholding the histo-
gram.

Fig. 12 shows band 4 from the Landsat Thematic Mapper (TM).
The histogram shown in Fig. 13(a) is analyzed at a scale which
permits the components of interest in the histogram to be easily
detected. The six components identified in Fig. 13(b) are detected
at a scale 7 = 2.5. The two lower components correspond to water
(a reservoir and turbid water in a river), and the two higher com-
ponents correspond to crops and denser vegetation. Other materials
present in the image are lumped into the central two modes. Fig.
14 shows bodies of water and areas of denser vegetation extracted
by assigning pixels into water and vegetation classes based on a
maximum a posteriori decision criterion.

VI. SUMMARY

A method for approximating histograms by normal mixtures
using a scale-space approach was described. An examination of the
fingerprint of a histogram revealed that the histogram could be ap-
proximated at any scale by a sum of normal distributions. A two-
step approach for estimating the parameters of the underlying dis-
tribution was described. It involves a two-step process in which
initial estimates are computed from the locations of zero-crossings
at the scale of the analysis, and subsequently refined using an it-
erative maximum likelihood estimation technique. The approxi-
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mation of the histogram which results is scale-dependent in the
sense that the number of components used is related to the scale at
which the histogram was analyzed. The technique is currently lim-
ited to analyzing univariate distributions. Extensions to two or more
dimensions appears possible but may not be computationally fea-
sible or justified in light of current applications.
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