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ABSTRACT

A hybrid (signal-symbol) approach for
detecting significant changes in imagery uses a
signal-based change detection algorithm followed by
a symbol-based change interpreter. The change
detection algorithm is based on a linear prediction
model which uses small patches from a reference
image to locally model the corresponding areas in a
newly acquired image, and vice versa. Areas that
cannot be accurately modetled because some form of
change (signal significant) has occurred are passed
on to the change interpreter. The change interpreter
contains a set of "physical cause frames" which
attempt to determine if the change is physically
nonsignificant (e.g., due to clouds, shadowing,
parallax effects, or partial occlusion). Changes due
to nonsignificant changes are eliminated from
further consideration. If the physical cause of the
change cannot be determined, it is passed on to an
image analyst for manual inspection. Preliminary
results of work in progress are presented. These
results indicate that the methodology is extremely
effective in screening out large portions of imagery
that do not contain significant change as well as
cueing areas which are potentially significant.
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1. INTRODUCTION

The ability to detect changes between two or more
images of the same scene is important in fields such as aerial
reconnaissance, remote sensing, and cartography. The image
analyst, in looking for changes between images, is confronted
with substantial variation in image quality, perspective and
illumination differences, and image formats covering large
geographic expanses. The time-consuming and tedious nature
of this process is compounded by the low rate of occurrence of
significant changes. As a result of these factors, the change
detection problem has received considerable attention in the
literature.

Previous efforts to automate change detection have
focussed on implementations in either the signal or the
symbolic domain. Signal change detection techniques produce
a measure of dissimilarity between images by correlation
techniques or image subtraction. In an early treatise, Rosenfeld
(1961) outlined the principle steps involved in change detection
and reviewed several measures of statistical correlation, NASA
(1978) demonstrated the effectiveness of digital subtraction of
Landsat multispectral imagery for monitoring land cover
changes. Global subtraction highlights areas of change but also

produces a large number of false alarms due to variations in
image registration, sensor calibration, illumination and
atmospheric conditions. In developing a pattern recognition
system for city planners, Kawamura (1971) computed
statistical difference features such as correlation coefficients,
average entropy change, and the change in probability of bright
areas over subareas in aerial imagery. Subareas were then
classified as either a "change of interest” or ''no change of
interest” based on these features.

Additional studies have investigated the efficacy of
performing change detection in the symbol domain. Price
(1977) segmented two images into regions with similar
characteristics (e.g., based on radiance and texture) and
represented these regions by feature-based descriptions
including information such as size, location, and geometric
measures. Change detection is accomplished during a matching
process which computes the similarity between regions of the
two images and pairs regions which are most similar. Regions
which do not match represent the appearance or disappearance
of a feature. While successful, the resolution of feature-based
symbolic matching is limited by the granularity of the
segmentation of the images into regions. Since many spurious
regions are generated during image segmentation, the matching
process can be computationally expensive. As a result,
additional criterion such as size and average radiance should be
used to organize the regions and guide the matching process
(Price, 1982).

This paper outlines a hybrid change detection strategy
which uses signal processing techniques to detect changes
between registered images and symbolic reasoning methods to
eliminate changes that are not physically significant. Our goal is
to detect all local changes in the scene at the signal level and to
filter out only those changes whose physical cause can be
determined based on features of the changed areas. The
proposed approach thus does not attempt to recognize and
match objects in the two images. The advantage of this
approach is that by using signal processing at the initial stage,
when there is no evidence of a change at the signal level,
symbolic processing is not invoked. When there are few
changes, the computational efficiency of the technique is
similar to pure signal-based techniques; when there are many
changes, the computational efficiency of the technique is
similar to pure symbol-based techniques.

The organization of the paper is as follows: Section 2
provides a framework for formulating the change detection
problem. A signal-symboi architecture for change detection is
outlined in Section 3. The signal change detection algorithm is
detailed in Section 4 and a preliminary design for the
knowledge-based change interpreter is discussed in Section 5.
Initial results are presented in Section 6.



2. BASIS FOR CHANGE DETECTION

Ideally, an automatic change detection system should
extract only significant changes between images. Exactly what
is significant is often defined by the application. In the present
application, localized man-made activities such as building
construction and vehicle displacement, or large scale
non-seasonal changes in surface material characteristics (¢.g.,
forest-fire damage and changes in flood zone areas) are
considered to be significant changes. Nonsignificant changes
include atmospheric effects such as the presence of clouds or
haze, and seasonal changes which affect vegetation and surface
characteristics. In addition, nonsignificant changes may be
induced by comparing images acquired at different times and
perspective, and images which differ in contrast, resolution and
noise level. ’

In order to develop a consistent framework for change
detection, changes are modelled at three distinct levels: signal,
physical, and semantic. In previous work in multi-band image
processing (Tom, 1985), it was observed that images of the
same scene acquired at different wavelengths (possibly by
different sensors) at the same time tend to be locally correlated
at the signai level. That is, even though images sensed at
different wavelengths may be globally uncorreiated, local
structure (e.g., due to changes in albedo) tends to be highly
correlated across wavelength. In previous applications this
local correlation property has been exploited to use higher
resolution/lower noise imagery to spatially enhance lower
resolution/higher noise imagery. In applying the above
technique to change detection, wavelength is replaced by time.
The basic assumption then is that small patches in registered
images acquired at different times tend to be locally correlated if
the underlying scene has not changed.

The detection of changes in imagery at the signal level
is the first step in the change detection process. The second
step is determining whether the changes detected at the signal
level are physically significant (i.e., determining their physical
cause). Changes attributed to nonsignificant physical effects
such as differences in atmospheric conditions, perspective and
illumination differences, and seasonal changes are eliminated.
The third step is determining whether the remaining changes
are significant in a semantic sense given a context for

interpretation. For example, if the goal is to detect large areas
of change due to forest fire damage, small isolated areas may
be ignored. The overall process generates hypotheses that areas
have changed using signal-based models in a bottom-up
fashion, and tests the hypotheses top-down based on heuristic
models of physical cause and semantic relevance.

3. CHANGE DETECTION SYSTEM
ARCHITECTURE

A hybrid (signal-symbol) architecture for automatic
image change detection is shown below in Fig. 1. Its primary
function is to screen out imagery which does not contain
significant change. The architecture is structured as a cascade
of a signal-based change detector and a symbol-based change
interpreter. At each level of processing, the amount of image
data that needs to be processed is reduced.

The change detector uses a locally adaptive image
subtraction technique to detect and localize areas of change in
an input image relative to one or more (spatially preregistered)
reference images. Following adaptive subtraction, prediction
error images are filtered and combined to produce change cues.
The output of the signal change detector is a map of cues
indicating signal significant changes. For each change cue,
descriptive processes build a symbolic representation of the
changed area in terms of features derived from the original
imagery. The change interpreter applies rules in a
hypothesis-driven fashion to the change-tokens, determining
the physical cause and semantic relevance of the change.
Nonsignificant changes are eliminated, and the remainder are
displayed to the image analyst. Currently, the change detection
software is implemented on a VAX 780/FPS array processor
system, and the change interpreter is implemented in Zetalisp
on a Symbolics Lisp machine. Future versions of the system
may factor collateral data (terrain data and maps) into the
change detection process.

4. SIGNAL-BASED CHANGE DETECTION
ALGORITHM

The change detection process is an outgrowth of a
detection technique based on two-dimensional (2-D) linear
prediction by Quatieri (1983). His technique demonstrated that
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image backgrounds of grass, fields, or trees (natural textures)
in aerial photographs could be viewed as sample functions of a
2-D nonstationary random field and could be modeled by 2-D
linear models. Manmade objects, whose statistics are generally
unknown (since it is desired to detect a broad class of objects),
are not modeled well by the linear approach and exhibit large
modeling errors. Quatieri's major contribution was the notion
of using these linear prediction error residuals to derive a
significance test for detection exhibiting a constant false alarm
rate (CFAR detector). In addition to the detection of manmade
objects, however, detection of natural boundaries also
* occurred. The approach in this paper overcomes that problem
by using a multi-band approach, i.e., one in which a reference
image is used to locally model a newly acquired image.

The 2-D linear prediction approach involves solving
for the optimal set of prediction coefficients that model a patch
of a new image from a patch of a reference image using a
noncausal mask. This procedure is recomputed for all patches
of imagery (i.c. for a patch centered on each pixel location). In
order to simplify computations, an approximation to the 2-D
linear prediction method was implemented. The simplified
method is appropriately termed the adaptive subtraction
method. For a local patch of imagery, scale and offset
coefficients are computed to optimally predict (in the minimum
squared error sense) the new image from the reference and vice
versa. The new image is predicted from the reference image
(forward prediction), and the reference image is predicted from
the new image (backward prediction).

The prediction error is the difference between the
estimate and the image patch that is being estimated at the center
of the prediction mask

Eforward(MM) = inew(mm) - lpew(n,m)
= inew(Mm) - { a(n,m) igeg(n,m) + b(n,m) |

hackward(Mm) = iref(n,m) - iep(n,m)
= igef(n,m) - [ ¢(n,m) ipeyy(n,m) + d(n,m) ]

where the scale and offset coefficients a,b,c and d are
continually computed by solving sets of overdetermined
equations (Tom, 1985).

Objects which appear or disappear in the imagery are
- evidenced by corresponding signatures in the forward or
backward error images respectively. Objects which appear in
the newly acquired image cannot be modeled by the reference
and thus give rise to a large forward prediction error. (The
backward prediction error is small since the absence of the
object in the reference can be modeled in the newly acquired
image by lowering the gain ¢ and adjusting the offset d.) Where
objects disappear in the newly acquired image, the situation is
reversed. Objects that are spatially displaced are characterized
by comparable signatures in both error images.

In the process flow of the the signal-based change
detection module (Fig. 1), the new image is first registered to
the reference image by an automatic registration technique. The
images are first coarsely registered given the camera position,
and then locked together using a statistically based technique
for generating control points automatically. Next, the adaptive
subtraction module generates the forward and backward
prediction error images. These error images are thresholded for
significant detections at a given CFAR level, combined to
cancel complementary errors due to minor displacements, and
then filtered to remove isolated noise peaks. The output from

the signal change detector is a bit map which delimits the extent
of areas which have undergone some form of signal level
change (significant or not) as well as the corresponding
registered imagery patches.

5. CHANGE INTERPRETATION

The output from the signal-based change detector is a
map of change cues where each cue represents an assertion that
something has changed over the corresponding area in the
image pair. The goal of change interpretation is to reduce the
number of detected changes that must be ultimately examined
by the image analysis. Our approach is to eliminate those
changes that are not significant based on physical causes or
semantic relevance. The preliminary implementation of the
change interpreter focusses on identifying three types of
nonsignificant changes common to many aerial scenes:
shadows, clouds, and partial occlusion of existing objects.
Experience with different geographic scenarios indicates that a
large majority of nonsignificant changes result from these
phenomena. -

Before the change cues can be interpreted, they must
be converted into symbolic form. The first step in generating
the symbolic description is to label connected areas in the map
of change cues provided by the signal change detector. For
cach connected area, a change-token is created. Change-tokens
contain slots for descriptive information (i.e., for features of
the changed area) such as the size, shape, location, orientation
and spatial context of the changed area, as well as information
derived from the input and reference image (e.g., image
radiance statistics and local correlation structure).

The change interpreter (Fig. 2) contains a set of
"physical cause frames" for clouds, shadows, and partially
occluded objects. Descriptive information is computed on an
"as needed basis" as individual physical cause frames are
triggered during the interpretation process. Each physical cause
(cloud, shadow, partial or total occlusion) activates descriptors
which extract features from the imagery in and around the
corresponding change cue. Descriptors are applied in a
hierarchical fashion based on the cost of computation and the
degree of evidence they provide in determining a physical
cause. The control strategy is designed to minimize the amount
computation needed to prove that a change is not significant.
Coarse level information is initially computed for ail
change-tokens. Change-tokens generate physical cause
hypotheses which then attempt to verify that they are the cause
of the change. If there is insufficient evidence to conclude the
cause of a detected change, finer level descriptive processes are
dispatched. If the cause of the change cannot be determined, it
is brought to the attention of the image analyst.

As an example, the interpretation process begins by
computing simple feature descriptions of the change-token
(area and radiance statistics) and generating hypotheses that the
change is due to shadow or cloud. If collaterai information is
available, the possibility of a shadow is eliminated entirely if
the sun-angle is the same in both images. Otherwise, the
shadow hypothesis records a high confidence level if the
change-token has a low average radiance measurement over a
small area, with little variation in the spectral variance. The
cloud hypothesis is eliminated if available collateral data
indicates that the image conditions were cioud-free; otherwise,
the cloud ruleset operates on the radiance statistics. The cloud
hypothesis is verified by a relatively high radiance measure
covering a substantial area. If there is high confidence that the
change is cloud or shadow, the change-token is eliminated
from further consideration.



The cloud hypothesis should be either proved or
eliminated within the first cycle of description/verification. If
weak evidence exists for shadow, secondary features are
derived to verify that the change is the result of shadow or
partial occlusion. The majority of change cues resulting from
shadows mirrored about an object or minor shadow variation
and parallax differences are eliminated by locally averaging the
difference of the prediction error residuals as described in the
next section. The remaining shadow changes occur in only one
image. Shadow confirmation may be obtained by using
measurements such as correlations between areas on opposite
sides of the shadow edge (Witkin, 1982), or by examining the
shadow-making regions which have long boundaries in
common with the shadow and are oriented at the appropriate
sun angle (Nagao, 1980).

Because of differences in the look-angle of sensors,
roads or buildings which are visible in one image may be
occluded in the other image. The possibility of occlusion is
explored if there is a change in camera position between
acquisitions. If so, it is then necessary to decide if the
occlusion is due to a significant object. As noted in Section 3,
man-made objects are not modelled well by the linear approach
and thus give rise to large modelling errors. Two types of
changes occur; a man-made object occluded by a natural object,
and a man-made object occluded by man-made objects. The
former change is insignificant and is being examined because it
frequently occurs as a result of natural object overlay, e.g., a
trec obscuring one side of the road. In this case, partial
occlusion can be identified by linear edges or regions which
once extended in the changed image are similar to edges
contained in the unchanged image.

As it is currently being developed, change
interpretation must handle a variety of scenes from different
geographic areas. Efforts are being made to structure the
physical cause ruleset so that it is robust across all scenes.
Senario-specific rulesets are being developed for semantic level
interpretation since the relevance of a change depends on what

6. EXAMPLES

For the following two examples, aerial photographs
were acquired from USGS and digitized using a CCD camera.
The images are cloud-free, and were acquired at about the same
ume of day. The pair of images in Fig. 3 are of a scene in
which a building not present in the reference image (a) appears
in the newly acquired image (b). The images differ both in
perspective and in the amount of haze present (which is
simulated). The images are registered so that features on the
ground are spatially aligned. The pair of images in Fig. 5 show
the prediction error obtained by predicting the image in Fig. 3a
from that in Fig. 3b (5a), and the prediction error obtained in
predicting the image in Fig. 3b from that in Fig. 3a (5b). (A
7x7 sliding window was used.) It is evident that prediction
errors occur in the vicinity of the building which appeared in
Fig. 3b as well as around buildings and other vertical structures
due to parallax effects. To mitigate the effects of parallax,
differences in illumination, as well as other effects due to minor
misregistration and noise, the prediction error images are
locally averaged. For parallax effects, the assumption is that the
residual errors caused by vertical features will cancel within
windows that are large compared to the feature of interest. The
result of averaging the prediction error within a 33x33
Gaussian tapered window (Fig. 4) shows that the parallax
effects do in fact cancel in areas that did not change; however, a
net prediction error residual is evident in the vicinity of the
building that appeared in the new image.

The second example in Fig. 6 is of another scene in
which a vehicle in (a) is mussing in (b) and a building in (b) is
missing in (a). By examining the sign of the prediction error
one can identify objects that either appear or disappear between
images. Fig. 7a shows an area of negative error caused by the
disappearance of the vehicle in Fig. 6b. Fig. 7b shows an area
of I;:;ositi6ve error due caused by the appearance of the building
in Fig. 6b.
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7. SUMMARY

A hybrid approach to detecting changes in imagery
was described. [t consists of a signal-based change detection
algorithm which identifies all areas which have changed at the
signal level (significant or not), and a symbol-based change
interpreter which eliminates those areas caused by changes that
are not physically significant or semantically relevant.
Preliminary results of the signal change detection algorithm,
and a discussion of the design of the change interpreter were
presented. Preliminary results indicate that the methodology is
extremely effective in screening out large portions of imagery
which do not contain significant change. On-going work
focusses on expanding the rulebases within the change
interpreter which reason about the physical cause and semantic
relevance of the detected changes.
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