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Over the last twenty years a variety of pattern
recognition techniques for classifying terrain and cultural
features using multi-spectral imagery have been
developed. The purpose of this paper is to review and
assess representative methods from major technique
classes categorized according to the kinds of pattern
models used (statistical, or heuristic), the types of infor-
mation used (spectral, textural, spatial, and contextual),
the manner in which they are applied to the image (i.e.,
to pixels or regions), and the manner in which they parti-
tion the image into classes (e.g., single step or hierarchi-
cal). An assessment of the accuracy, computational
efficiency, and reliability is performed and trends in the
technology are identified.

1. Introduction

A variety of techniques for classifying multi-spectral
images have been developed for applications which
include crop monitoring, land-use studies, geologic
exploration and mapping. While the feasibility of
automated techniques was demonstrated in the mid-
1960s, it was not until the launch of the Landsat satellite
in 1972 that widespread development and use of mul-
tispectral classification techniques began. MacDonald [1]
reviews the history of automated remote senmsing for
agricultural applications, which has been a major driver
of the technology. Other applications in urban/suburban
land use analysis, water resources assessment, geologic
exploration, forest and rangeland monitoring are sum-
marized in Colwell [2]. In general, the development of
automatic classification techniques has been motivated
by their potential ability to process imagery data at rates
and accuracies beyond those possible for photo-
interpreters or image analysts.

The development of new classification techniques
has also been driven by advances in sensor technology.
Table 1 compares the Landsat multispectral scanner
(MSS) and thematic mapper (TM) with future sensors
such as the French Systeme Probatoire d’Observation de
la Terre (SPOT) and NASA's Airborne Imaging

Spectrometer (AIS). (References 3 and 4 review these
and other planned multispectral sensors) It is evident
from this table that future multispectral classification
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techniques must be able to handle data having a greater
number of spectral bands, higher spatial resolution and
shorter repeat times. All of these factors will contribute
to an increase in the volume of data that must be pro-
cessed, thus dictating that future techniques be accurate
and computationally efficient to justify their use.

The objective of this review paper is to assess the
state-of-the-art in multispectral classifiers by examining
current multispectral techniques within the context of
the overall classification process. Techniques, both for
classification, and to support classification (ie., pre-
processing, feature extraction, training and post-
processing) are reviewed. The paper discusses current
methodologies and future directions in the technology
and addresses issues such as computational efficiency,
accuracy, and reliability.

The organization of this paper is as follows. Section
2 provides an overview of the classification process and
addresses such activities as scene and sensor pre-
processing requirements, signal vs. semantic considera-
tions in feature extraction, and issues which relate to
training a classifier. Section 3 begins with a review of
statistical classification theory. The limitations in statisti-
cal classifiers motivates the subsequent discussion of the
use of spatial and contextual information, multi-temporal
classification techniques, hierarchical classifiers, and
methods for incorporating collateral information sources
to improve classification accuracy and efficiency. Sec-
tion 3 also describes post-processing techniques for
extracting and interpreting spatial and structural infor-
mation in the thematic map. Finally, Section 4 summar-
izes current trends in applications of multispectral
classification techniques, and outlines future directions in
the technology.

Table 1 Comparision of Multispectral Sensors

Sensor Bands Resolution (m) Repeat

MSS 4 56x79 18 days

™ 7 30 (120 thermal) 18 days

SPOT 3 20 26 (5 off nadir)
AlS 128 4-10 —




2. Multispectral classification process

Fig. 1 depicts the typical processing flow involved in
computing a thematic map from multispectral imagery.
Pre-processing involves registering, restoring and normal-
izing multispectral images. Spectral, textural, and tem-
poral features (or measurements) of the images are com-
puted during feature extraction. Training involves
estimating the parameters of an underlying model for
each class present in a training data set, and computing
decision rules for classification based on the model. The
classifier applies these rules to pixels or regions, either in
a single step or hierarchical process. The classifier may
use spectral information alone or in conjunction with
spatial, contextual, temporal, or collateral information.
Following classification, analysis of the structure of and
relations between groups of pixels in the thematic map
may then be performed depending on the application.

The remainder of this section addresses the process
up to classification (with classification and post-
processing techniques discussed in Section 3). Specific
attention is directed to scene and sensor requirements in
pre-processing, signal and semantic considerations in
feature extraction, and issues related to training a
classifier.

2.1. Pre-processing requirements

Pre-processing involves activities such as registering
multi-spectral images and collateral data sources (eg.,
digital terrain elevation models, previously compiled
maps and charts), performing corrections for sensor and
atmospheric effects, and restoring data lost or degraded
during transmission. The goal of pre-processing is to
normalize the imagery so as to allow subsequent
processes to access the data as an image of vectors,
where the vector elements may contain spectral, spatial
and temporal measurements of the image. Although a
detailed discussion of image pre-processing techniques is
beyond the scope of this paper, its importance in sup-
porting classification cannot be over-emphasized. For
example, misregistration between spectral bands, in par-
ticular, the Landsat TM thermal band, can cause linear
features to be lost, and can result in classification errors
along region boundaries [5]. Also, since the resolution of
the thermal band is four times less than the other six
bands, it must be spatially sharpened [6] prior to being
merged with the other bands.

In general, multispectral data is pre-processed either
to enhance the imagery for human interpretation or to
normalize it for subsequent machine processing. In either
case, an important step in pre-processing is image regis-
tration since subsequent feature extraction techniques
require imagery that is spatially aligned across spectral

bands (and across time for multi-temporal classification).
It may also be necessary to register the imagery with
maps and collateral data sources for use by the classifier.
Juday [7] provides an overview of image registration
techniques developed for Landsat. In general for flat
terrain, simple geometric transformations (eg., polyno-
mial warping) will suffice. However, in areas having
significant terrain relief, terrain clevation models may be
required to achieve the required registration accuracy.

Following registration, image restoration techniques
are applied to correct for:

® Sensor-dependent effects such as degraded spatial
frequency response and noise in the sensor

® Scene-dependent effects such as atmospheric haze
and illumination variations within the scene due to
shadows and topographic relief.

Sensor-dependent corrections can, in principle, be deter-
mined at the outset and applied to all images in a similar
fashion. Examples of sensor corrections are spatial fre-
quency sharpening (eg., thermal band sharpening [6])
and destriping. The latter correction is concerned with
the removal of fixed pattern noise introduced by varying
gains in the detector elements of the sensor [8]. Thermal
band sharpening is motivated by the desire to clasify
Landsat TM imagery at the full 30 meter resolution. In
cases where the resolutions of spectral bands differ (as in
the TM), it is clearly unacceptable to degrade the higher
resolution bands to achicve registration at the lowest
resolution. Thermal band sharpening (Fig. 2) allows the
lower resolution thermal band in the TM to be shar-
pened from 120 to 30 meters based on a local correlation
assumption between bands.

Scene-dependent corrections require corresponding
methods for accurately estimating the effects to be
removed. For example, empirical methods for estimating
the bias term in Landsat MSS due to atmospheric haze
have been developed by Chavez [9] One method
involves plotting the intensities in bands 4,5, and 6
against band 7 (which is least affected by the haze)
within a homogeneous area in the image. A linear
regression is performed on each scatter plot to determine
the intercept, which is subsequently subtracted from the
respective band. In mountainous areas, interactions
between the surface, local topography, and the interven-
ing atmosphere must be taken into account. Sjoberg [10]
developed a six parameter model of the imaging process
where the model parameters are empirically determined
from the image and auxillary data. The model is shown
is shown to be useful for evaluating the effect of varying
the parameters of the model on the estimated albedo
map. Ongoing research is concerned with developing
models capable of accurately estimating and removing
terrain and atmospheric effects.
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232. Signal vs. semantic considerations in feature extrae-
tion

While the original spectral measurements may
suffice as features in many classification applications,
feature extraction may be necessary:

® For data compression (ie., to reduce the dimen-

slonality of the measurement vector)
e To provide features or measurements which

effectively discriminate between the classes of
interest in the image

o For measuring physical properties of the scene

® To provide measures that are invariant to certain
types of scene-dependent effects.

The first two reasons are based on signal considerations:
to reduce the complexity of the classifier and to optimize
its performance (i.., to minimize the probability of
error). The second two reasons are based on semantic
considerations: to compute measurements which relate to
physical scene properties such as vegetative content or
so0il moisture, and to compute a set of equivalent
features that are quasi-invariant to topographic or
environmental effects.

The principal components transformation [11,pp
275-283] provides a set of uncorrelated measurements
ordered in terms of their variance. To reduce the dimen-
sionality of the measurement vector, the components
which account for most of the variance (generally the
first two for the Landsat MSS, and the first four for the
TM [12]) are retained. Although the principal com-
ponents transformation optimizes the structure of
feature space in a signal or statistical sense, its interpreta-
tion is scone-dependent. For a TM image containing agri-
cultural and urban areas, the first principal component is
correlated with vegetation and crops, the second with
bare soil areas, and the third with urban and man-made
areas. On the other hand, for images containing large
bodies of water, the first principal component discrim-
inates land and water, while the second clearly defines
cultural features such as buildings and roads [13].

Tasseled cap transformations [14,15] have been used
to compute physically-meaningful measures from
Landsat MSS and TM imagery. Experience has shown
that the data variability in the MSS four-dimensional
feature space is largely confined to a single plane (ie.,
the first two principal components account for most of
the variance) in agricultural regions. Tasseled cap

transformations rotate the feature space such that the
new coordinate axes coincide with features such as "soil

brightaess®, “greenness” and "wetness®.

The tasseled cap transform thus differs from princi-
pal components transformation in that the goal is not
data compression (i.c., attempting to compress as much
signal information into as few dimensions as posmible).
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Instead, it attempts to measure physical properties of the
scene in an image-independent fashion. This difference is
illustrated in Fig. 3 which compares the two transforma-
tions over three different scenes. The tasseled cap
transform greenness measure provides a direct measure-
ment of the amount of vegetation present in each scene.
On the other hand, the first principal component must
be interpreted scene-by-scene. Dave [16] has shown that
the tasseled cap transform is affected significantly by
viewing geometry and atmospheric composition, and
thus must be used with care in hazy and mountainous
areas. Jackson et al [17] discuss the effect of atmospheric
path radiance and absorption on the tassled cap
transform.

Use of features such as spectral band ratios [18] pro-
vides still another option during feature extraction. The
use of band ratios allows effects such as illumination
variations and shadows in the image to be reduced and is
important in classifying terrain in mountanous regions.
Ratios are also used in geologic mapping to enhance sub-
tle differences between rock types [2, pg 1749].

33. Training

Training a classifier involves developing a model for
each class of interest over areas in the image where
*ground truth” is known. Traditionally, statistical models
arc employed to represent the classes of interest and
may take the form of conditional probability densities or
a set of parameters such as the mean vector and covari-
ance matrix for each class. Another approach has been
to use discriminant functions. Several issues are impor-
tant in training:

® Selecting spectrally homogeneous regions that
represent distinct classes in the image

® Ensuring that one has a valid statistical sample for
each class

@ Obtaining reliable estimates of the probability of
error for the classifier from the training set

® Determining to what extent the signatures
obtained through training are extendable to other
scenes separated in space and/or time.

In general, if the classes are not homogeneous and well-
separated with respect to one another, statistical
classification techniques cannot be expected to perform
well.

One way of assisting the image analyst in selecting
bomogeneous regions is by clustering the data prior to
training [19]. By mapping clusters back into the image,
homogeneous regions can be identified. Richardson [20]
describes an interactive software package developed at
EBRIM for clustering and grouping pixels into training



regions. The package allows a user to supervise the
sbove process until a specified error rate is achieved. A
review of the various methods used in estimating the
error rate of a classifier may be found in Toussaint [21].

In estimating class statistics or probability models,
one must be aware of sample size considerations (ie.,
the minimum size of a training region given the number
of features used). Foley [22] specifically considers how
the size of the training sample biases the training set
classification error rate and has shown that for the two-
class problem with multi-variate Gaussian densities, the
number of samples should be three times greater than
the number of features. If fewer samples are used, he
shows that the estimated training set error rate will much
lower than the true error rate.

The selection of training regions is predicated on
the availability of ground truth, and on the analyst’s abil-
ity to infer ground truth from collateral data sources
(maps and charts) or directly from the imagery. In some
applications (e.g., in denied areas), ground truth may not
be available or it may be outdated. Having to rely on the
analyst to retrain the classifier on each scene will not be
cost-cffective in a production application. Moreover, if
the analyst is not familiar enough with the sensor to be
able to infer ground truth from the imagery, he may
provide incorrect information based on subjective judge-
ments. An important question then is to what extent can
the spectral signatures obtained in one scene be used to
classify others.

One approach to the problem of extending the use-
fulness of the training set to other scenes separated in
time and/or space (often called signature extension)
involves computing multiplicative and additive signal
correction factors to map signatures in one data set to
those in another [23,24]. The technique is limited to
scenes which fall within the same stratum, i.c., the region
in space and time which has the same types of materials,
similar atmospheric and environmental effects, and is
viewed under similar conditions. Within strata, such tech-
niques have been shown to reduce the error rate by up
to 50% over that possible without signature extension.
Another approach proposed recently [25] is to use prior
knowledge of how surface materials ought to appear in a
particular scene to predict their spectral signature. This
approach is discussed further in Section 3..

3. Multispectral classification techniques

This section begins with a brief review of the types
of models used and the decision techniques employed in
multispectral classifiers. A more complete discussion is
provided by Swain [26]. The limitations of pixel
classifiers motivates our review of techniques which use
spatial, contextual, temporal, and collateral information
to improve accuracy and reduce computation time.
Advantages of a hierarchical approach to multispectral
classification are then discussed. Examples illustrating
ways in which spatial and structural information may be
derived from the thematic map during post-processing
are then provided.

3.1. Class models and decision rules

The simplest form of class model is to represent
each class by its mean vector, the average values of its
measurements computed from the training set. These
measurements may pertain to spectral, spatial, or tem-
poral properties of the image. The corresponding deci-
sion rule for classifying the vector x (i /) is:

If: dx(ij) 2e] < d[x(i.), 5,]
Then: y(iJj) = oy

for m=12,.M , n# m, where y(i /) is the output image,
d[] is the distance measure, and x, is the mean vector
for the m th class. Examples of distance (or similarity)
measures include Euclidean distance, Mahalanobis dis-
tance (used if one wishes to account for class covari-
ance), the angle between vectors (used if the classes clus-
ter radially in the feature space) and Hamming distance
(for binary-valued features).

Fig. 4 (a) illustrates a minimum (Euclidean) distance
classification of a Landsat MSS image over Saudi Arabia.
The thematic map (b) contains four major land cover
categories: water, vegetation, coastal arcas, and desert.
The minimum distance image (c) shows that although all
pixels are classified, certain regions (e.g., highly textured
areas in the desert and shallow water) are in fact quite
different from the training regions. One would thus
expect a higher classification error rate in these regions.
Although the minimum distance classifier is easy to
implement and computationally inexpensive, its disad-
vantage is that there is no quantitative method for reject-
ing outliers (i.., pixels which do not belong to any of
the training classes).

Probability models are based on the idea that each
type of material in the image gives rise to an associated
distribution in the feature space. Probability models
characterize the distribution of pixel values within each
clas in terms of conditional probability densities. For
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example, the Bayes (minimum probability of error) deci-
sion rule [27] is:

If : Plog, 1 2(ij)]> Plo, 1x(i,j)]
Then: y(ij) = wy,

which chooses the class having the largest a posteriori
probability where

plog 1x] = P lw,)P(w,)
"= p()

is the a posteriori probability, p (x lo,, ) is the conditional
probability density, P (w,, ) is the relative frequency for
the m tA class, and p(x) is the sum of all M class-
conditional densities weighted by their relative frequen-
cies. If the densities are multivariate normal, and the
relative frequencies and covariance matrices are (or are
assumed to be) equal, the maximum likelihood decision
rule is equivalent to choosing the class with the
minimum distance.

Probability models based on multivariate normal
distributions are the most common used due to the rela-
tive easec with which they may be represented and mani-
pulated, and the fact that the probability distributions of
large homogeneous regions can often be modelled
reasonably well using Gaussian distributions. (Hunt [28]
shows that Gaussian behavior can be demonstrated if an
image is modeled as consisting of intensity fluctuations
about a local mean.) An advantage of using probability
models over simple statistics is the ability (in principle)
to predict and control the error rate of the classifier. For
example, if the a posteriori probability is lower than a
threshold, the pixel may not be classified at all. This
situation was noted above for the case of the minimum
distance classifier. A disadvantage is assuming a model
that is not justified (eg., making the Gaussian assump-
tion). There is also the extra computational cost involved
in computing a probability rather than just a distance.

Instead of evaluating a distance or probability, a
more direct method of classification is to partition the
decision space into disjoint regions at the outset. Often
the decision space can be partitioned into regions using
linear discriminant functions of the form

£
w,lx] = w,o+‘21wﬂx, =0
where x = {x,} and the {w,, } are weighting coefficients.
Classification then involves evaluating rules such as
If : wplx(@ )] > 0
Then: y(i,J) = ®,.

In contrast to maximum likelihood or minimum distance
clamifiers, the above decision rules are evaluated until
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only one rule fires. If no rule fires, the sample is not
classified. Techniques for computing discriminant func-
tions from training data are discussed in [27].

Decision rules may also be derived from prior
knowledge concerning the appearance of surface materi-
als in the image [25]. For example, since water absorbs
nearly all of the incident radiation at near and middle
infrared (IR) wavelengths, if water is present in the
scene, the darkest regions in those bands (e.g., TM bands
4,5, or 7) are probably water. A rule for recognizing
water might then be

If: (band4 < dark-threshold)
Then: water.

As another example, since the spectral signature of vege-
tation generally peaks in the near IR (since the green
leaf absorbs little energy in this region with most of the
incident radiation being either reflected or transmitted) a
rule for recognizing vegetation might appear as

If: (band<4 > band-3) and (band4 > band-5)
Then: vegetation.

Although the amount of water in the soil affects its
overall reflectivity, the reflectance of soils generally
increases in the near IR. Thus a simple rule for recogniz-
ing soil-like materials is

If: (band4 < band-S)
Then: soil-like.

The multispectral image analysis system (MSIAS) [28] is
currently being used to develop surface material
classifiers based on the latter approach. Classification
accuracies comparable to those achievable with a train-
able classifier have been obtained in preliminary experi-
ments.

3.2. Use of spatial information and context

Pixel classifiers consider each pixel individually
without regard to ecither the class of neighboring pixels
or the value of their measurement vectors. In addition
to the computational cost involved in classifying each
pixel in the image separately, the minimum achievable
error rate is limited by the overlap between classes in
feature space.

Landgrebe [29] reviews various methods by which
local information can be used to augment spectral meas-
urements. They include:



® Region-growing followed by sample classification
® Updating a pixel’s class using contextual informa-
tion

e Concatenating spectral and textural features.

The classification of multi-spectral data through the
extraction and classification of homogeneous regions
(ECHO) [30] is a two-step process which "grows” spec-
trally homogeneous regions, and classifies them on the
basis of their sample distributions. ECHO uses a likeli-
hood ratio test to decide if adjacent regions are similar
based on their probability densities (assumed to be Gaus-
sian). The technique suffers from a problem which
affects most region-growers; namely, not having a
sufficient number of samples in the early stages to reli-
ably estimate the probability densities. One solution to
this problem is to reduce the dimensionality of the data
(ie, reduce the number of spectral bands) so that
smaller sample sizes can be tolerated. The classification
error associated with the above technique is shown to be
dependent on the annexation threshold. For very small
thresholds, few regions form, and the classification error
equals that of the pixel classifier since little or no annex-
ation takes place. As the threshold increases, the statisti-
cal test becomes less stringent, a greater amount of inho-
mogeneity is tolerated and larger regions form.
Classification accuracy increases as the annexation thres-
hold increases to a point, and then decreases with
improvements in accuracy on the order of 3% reported
in [30].

Swain [31] and Chittineni [32] are among those who
have developed methods for using contextual informa-
tion in multispectral classification. Swain’s method is an
extension of an earlier method developed by Welch and
Salter [33] for interpreting black-and-white images.
Chittineni’'s method is based on Markov models and
involves computing a posteriori probabilities for all
classes on a pixel-by-pixel basis. (This would be a by-
product of running a Bayes or minimum probability of
error classifier.)

In training regions tramsition probabilities, ie., the
probability that a pixel at (7, j) is class o, given an
adjacent pixel at (i +i,, j +J,) is class w,, are estimated
for all combinations of classes m,n and positions p
within a window. These transition probabilities are then
used to sequentially update the a posteriori probabilities
in small neighborhoods. (Relaxation techniques [34] have
also been used in a similar fashion) The size of the
neighborhood determines the spatial extent of the
update process. After the update process has converged,
the class having the largest a posteriori probability of
occurance is assigned to each pixel. Improvements in
classification accuracy of 5% and 7% using 3x3 and 5x5
windows are reported in [32].

The use of texture measures to augment spectral
features has also been proposed. Wiersma and
Landgrebe [35] evaluated texture measures derived from
Haralick’s co-occurance matrix [36). They found that the
although certain texture measures performed better in
urban areas, their performance was generally no better
than the ECHO classifier described above. For most
scenes (with the exception of regularly textured urban
and residental areas), ECHO was found to perform best
at the lowest computational cost. Both context and tex-
ture methods are the most expensive to implement, with
the cost proportional to the size of the window used.
Moreover, the context classifier requires two levels of
training: first to determine the class conditional pixel
statistics, and second, to determine the transition proba-
bilities. ECHO is relatively inexpensive, involves the
same amount of training as pixel classifiers, but requires
somewhat more supervision during region growing. All
of the above techniques can reduce the error rate by up
to 5% in most scenes over that possible with a pixel
classifier.

Fig. 5 illustrates the effect of incorporating spatial
information into a classification. The thematic map (a)
was processed by a "mode-filter” which replaces the
center pixel in a sliding window by the pixel class which
occurs most frequently within the window. In the
resulting image (b), isolated pixels and misclassified pix-
els between homogeneous regions (caused by classes
mixing at the boundary) have been removed.

33. Multi-temporal classification

The development of multi-temporal classification
techniques has been primarily motivated by the difficulty
in discriminating between crop types based on the spec-
tral signature at a single point in time. Multi-temporal
techniques can be grouped into three categories: those
which invelve concatenating two or more multispectral
data sets separated in time and analyzing the combined
spectral-temporal feature vector, those which involve
computing and analysing temporal trends of physical
scene properties (e.g., vegetation content, soil bright-
ness), and those which involve relating multi-temporal
signatures to crop development models.

A problem in simply combining multiple data sets is
that there may be significant differences in the amount
of atmospheric haze and other effects which will tend to
mask the subtler surface changes between the scenes. A
solution to this problem is to perfrom a principal com-
ponents analysis in order to scparate large correlated
differences such as haze from local variations (e.g., crop
development). Such an approach was studied for moni-
toring land cover change [37]. As noted earlier, the prin-
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cipal components transformation is scene-dependent and
thus must be interpreted on a scene-by-scene basis.

Physically-based transformations such as the tasseled
cap provide measures of scene properties which can be
related directly to vegetation development and soil pro-
perties [38,39]. Crist [38] uses the tasseled cap greenness
and soil brightness features to discriminate between corn
and soybeans. The greenness and brightness measure-
ments made at about 10 day intervals are smoothed and
features such as peak value and time computed. Corn
was distinguished from soybeans by a lower and earlier
green peak. Greenness and brightness are highly corre-
lated for soybeans. Both peak later and reach higher

values for soybeans than for corn.

A simpler type of classifier called the “delta
classifier” [40] examines the differences between MSS
bands 4 and 5, 5 and 6, and 6 and 7 for the purpose of
separating wheat from other surface classes. At least
three time samples are required - one each during the
pre-emergence, emergence or heading stage, and brown
or harvest stage of wheat. A decision rule classifier is
used to classify wheat according to its similarity to a typ-
ical wheat development signature. Among the advan-
tages of the technique are that it uses fixed decision rules
and thus requires a minimal amount of training and
supervision, is computationally efficient, and provides
estimates of the proportion and spatial distribution of
wheat that have been shown to agree closely with the
ground truth over a four year period. A disadvantage is
that classification results are dependent on the acquisi-
tion dates of the MSS data relative to the biological
growth stage of wheat. The technique is only applicable
in areas which have at least three acquisitions, one dur-
ing each of the major growth phases.

Added sophistication in crop classification is' possible
by attempting to relate the measured multi-temporal sig-
nature to the growth state signature for the crop [41].
Initial results show the method able to classify wheat
with about the same degree of accuracy as the more
conventional multi-temporal classifiers described above.
It also shows some potential to determine crop maturity
without crop condition information in the training set.

34. Hierarchical dassification

Previous sections have dealt exclusively with single-
step classification techniques. This section discusses the
advantages of decision tree or hierarchical classifiers
which recursively partition multispectral images into
subclasses [42].

Surface material classes naturally structure them-
selves in a hierarchical fashion. For example, it is natural
to think of an aerial image as being composed of major
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surface classes such as water, vegetation, and soil-like
materials, of vegetation having sub-classes crops and
forests, and so forth. A decision tree structure applied
to image data, recursively classifies each pixel, refining
its classification upon each trial. The root node of the
decision tree is the whole image with intermediate nodes
representing increasingly refined surface material subc-
lasses.

In general, decision tree classifiers are useful in
domains whose feature spaces have complex decision
boundaries since each classifier need only concern itself
with the classes present at its node and does not have to
be capable of classifying the entire image. The implica-
tion here is that the complexity of the classification rules
is greatly reduced, and the rules can be developed in a
systematic fashion [43). Classification efficiency is also
increased as each pixel is not tested for membership in
every class. This is an important consideration given the
potentially significant size of multi-spectral data sets.
Finally, only the features that are needed for
classification at a given node are used so that potential
sample size problems which can result in using the full
feature vector can be avoided [44).

We have recently implemented a decision tree
classifier which uses a cooperative hierarchy of expert
system modules (Fig. 6). As shown in the figure, initial
modules are responsible for partitioning the image into
surface material classes, with subsequent modules
designed to identify objects within the image. Fig. 7
illustrates the hierarchical classification process for the
Landsat TM image shown in (2). Major classes (b) are
water (black), vegetation (grey), and soil-like materials
(white). Soil-like materials are further divided into
plowed fields (light grey), concrete (white), and other
(dark grey) in (c). Vegetation is subclassified into crops
(white) and less dense vegetation (grey). (Examples of
the kinds of decision rules used within the classifier are
contained in Section 3.1.)

3.5. Incorporating collateral data sources

In many circumstances collateral data sources (e.g.,
maps, charts, elevation data) and prior knowledge con-
cerning the expected classes and their relative propor-
tions may be available. A simple way to incorporate
prior knowledge concerning the relative frequency of
occurance for each class is as prior probabilities in a
maximum likelihood classifier [45]. Relative proportions
may be derived from historical data, old maps, and field
reports.



Map information may be used to guide the interpre-
tation of aerial images by focusing the attention of the
image interpretation (or understanding) system to the
parts of the image of interest (eg., roads, urban areas,
crop fields) [46]. Map guided segmentation techniques
[47] have also been proposed for extracting specific types
of regions (eg., dark compact areas).

Relaxation techniques have been used to combine
elevation, slope, and angle preferences of various tree
species to improve classification accuracy [48,49]. In pro-
babilistic relaxation labeling techniques, each pixel is
amigned a vector of probabilties, one for each class. The
likelihood of a pixel at (i,j) being a member of class w,
given a neighboring pixel at (i +i,, J +j,) is a member of
class w,, for all m,n and p is represented by a matrix of
compatability values. In this case, the compatability
matrix contains the context distribution which describes
the likelihood that certain tree classes are spatially com-
patable, as well as the likelihood of a class of tree occur-
ing as a function of elevation. By combining elevation
information into the classification in this way an increase
in clamification accuracy from 68% to 81% was
obtained.

34. Post-processing

The previous sections addressed techniques for com-
puting thematic maps from one or more multispectral
images. Depending on the application, post-processing
may be required to count the number of pixels in each
class (eg., to estimate the number of acres of a crop) or
to extract objects of interest (e.g., cartographic features)
from the thematic map. This section describes how spa-
tial and structural information can be computed from
the thematic map and used to identify semantically-
significant features such as road networks, urban areas
and major agricultural regions within the scene.

36.1. Extracting spatial and structural information

Up to this point in the classification process we have
made use of information that exists at the pixel level.
After clamification, pixels with the same class may be
grouped into regions and the properties of those regions
used to identify objects in the image. Pavlidis [50]
reviews techniques for labeling connected regions. Use-
ful properties of connected regions such as area, perime-
ter, compactness, elongatedness (structural properties),
orientation, location, and collincar/nearest neighbors
(spatial properties) may be computed from the image of
labeled connected regions as described in Winston [51].
The resulting symbolic descriptions are not unlike those
used in image understanding systems [52,53].

3462. Binsry image processing

Prior to extracting spatial and structural information
from the thematic map, it may be necessary to remove
isolated pixels, to separate compact and thin regions, and
to merge adjacent regions. These operations are imple-
mented by binary image operators such as shrinking
(replacing the center pixel in a sliding window by a zero
if there is a zero within the window) and expanding
(replacing the center pixel in a sliding window by a one
if there is a one within the window). In the example in
Fig. 8, regions having soil-like properties that are bright
in the visible (e.g., concrete and silt) are shown in (a).
This image is processed with a shrink operator to elim-
inate small and thin regions, followed by an expand
operator to restore the regions which remained after
shrinking to their original size. By subtracting the

resulting image from the original, the small thin regions
which were eliminated by the shrink/expand operation
are obtained. Long thin regions and compact regions are
shown in (b).

3.63. Grouping

Regions in the thematic map may be grouped in a
bottom-up fashion, using information derived from the
image such as spatial proximity and collinearity, and
top-down based on prior knowledge concerning the phy-
sical composition and structure of objects. Grouping is a
key step in the image understanding process since it
organizes the image into perceptually significant objects
[54]. Grouping techniques for recognizing cultural
features in aerial photographs are discussed in [55].
Although road networks are visible in TM imagery, only
partial scgments are generally extracted by the classifier
due to the limited spatial resolution of the sensor. As a
result, some form of line-growing and linking may have
to be performed as illustrated in Fig. 9. (In this example,
line segments are linked if they are within R segment
lengths of each other and if the orientation of the link is
within a degrees of the orientation of the segments.)

3464. Object identification

Objects may be composed of one region or more
depending on the resolution of the imagery, as well as
on the objects themselves. Assuming spatial resolutions
of the order of Landsat TM and SPOT, many types of
natural and man-made features can be identified on the
basis of region properties. In order to identify large
agricultural areas in a scene (Fig. 10), candidate regions
such as crop and plowed fields (a) are aggregated based
on their relative proximity to one another. Aggregates
whose area is greater than a minimum selection thres-
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hold are shown in (b). More complicated identification
rules which take into account the shape of and relations
between regions and objects within a scene are discussed
in [52]. Nagao and Matsuyama describe an system for
interpreting color IR aerial photographs using this
approach [53).

4. Summary

This paper reviewed and assessed various methods
for classifying multispectral images. The methods were
categorized in terms of the kinds of pattern models used
(statistical, or heuristic), the types of information used
(spectral, temporal, spatial, and contextual), the manner
in which they are applied to the image (i.e., to pixels or
regions) and the manner in which they partition the
image into classes (e.g., single step or hierarchical). An
assessment of the accuracy, efficiency and reliability of
representative techniques was performed for representa-
tive techiques in each category.

Several trends in the technology were evident
throughout the course of the review. Due to the
difficulty in discriminating between certain crops based
on their spectral signature alone, the trend in agricultural
applications (e.g., crop classification) is towards the
development of multi-temporal techniques to exploit
imagery acquired at regular time intervals. To better
resolve surface materials spectrally and spatially, the
trend in geologic exploration and mapping applications is
towards developing new techniques for exploiting
imagery acquired by senmsors with higher spatial resolu-
tions and more spectral bands. In general, current
interest is in developing techniques which effectively
combine multiple imagery sources, use spatial, textural,
and temporal information derived from the imagery and
incorporate collateral information sources to improve
classification accuracy.

In the future, technologies such as artificial intelli-
gence and image understanding will play a major role in
cxpanding the capabilities of multispectral classifiers.
Expert systems may be used to supervise and monitor
the operation of the classifier much like the image
analyst does today and image understanding techniques
may extend the ability of classifiers to identify objects in,
and detect differences between multispectral images.
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Fig.1 Overview of multispectral classification process

Fig. 2 Example of image pre-processing: thermal band sharpening
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Fig. 3 Comparison of feature extraction techniques in three different scenes:
principal components transform (left) and tasseled cap transform (right)
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(a) Black and white rendition of MSS bands 4,5, and 6.

(b) Thematic map (c) Minimum distance image

Fig. 4 Landsat MSS classification example (Saudi Arabia)
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Fig. 5 Effect of using spatial information in classification
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(c) Soil-like materials (d) Vegetation

Fig. 7 Hierarchical classification example
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(a) Pixels composed of concrete (b) Compact areas and thin segments

Fig. 8 Binary image processing example
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Fig.9 Growing extended road segments
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(a) Crops and plowed ficlds (b) Merged and selected according to aggregate area

Fig. 10 Aggregating regions in the thematic map
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