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Since the feasibility of automatic pattern classification techniques in remote
sensing applications was demonstrated in the mid 1960s, a variety of specialized
techniques for surface material classification and related applications have been
developed. Most of the techniques are based on statistical methods which use
probability models to describe the spectral, spatial or temporal properties of
material [2]. Recently, the use of heuristic methods for classifying surface
materials in multispectral imagery has been proposed [1]. The essence of this
approach is to describe surface material classes (SMCs) in terms of the relative
intensities between bands (ie., analysis of the spectral shape) and within bands
(bistogram analysis [3]). Potential advantages of such an approach are including
provisions in a system for directly incorporating expert knowledge into the
classifier (eg., how a particular material ought to appear in a given image), for
organizing the knowledge needed to recognize SMCs into explicit decision rules,
and for extending the usefulness of the classifier to a wider range of scenes and
imaging conditions (5].

In this paper a method for classifying SMCs based on the shape of the
spectral signature is presented. Spectral shape is described in terms of a vector
of predicates which specify the relative intensities between all pairs of bands.
Spectral signatures are represented as logical expressions of shape predicates
which define the classification logic. Preliminary results for Landsat TM image
classification are discussed.

1. Spectral Shape Representation

Let the spectral measurement vector at pixel (i,j) be denoted x(i,j). We
treat each spectral measurement x ={x,} as an approximation to the spectrum
at (i,j) where x, is the spectral response in the n'* band. The goal of the
present effort is to represent the spectral signature of SMCs by the shape of the
spectrum instead of as points in the N-dimensional measurement space [7]. To
illustrate this idea, consider the spectral plots in Fig. 1 from a four band sensor
such as the Landsat MSS. The reflectivity of vegetation increases in the near IR
while water is characterized as having a fairly low reflectivity in the visible and
IR. In terms of the shape of their signatures, vegetation (a) is characterized as
having a generally increasing response while water (f) has a decreasing one.

The proposed shape description is based on a specification of the relative
intensities between all pairs of spectral bands. The resulting description is
represented in the form of a conjunctive normal form expression (logical pro-
duct) of binary variables or predicates ¢ = {p,, } where
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1 (true) if x,>x,,

Pum = 6
0 (false) otherwise

For each spectral measurement, a logical expression or vector of predicates can
be derived which contains M =N (N —1)2 unique terms. By this method water
and vegetation would be represented by the expressions

twaer ={P2P13P1APB3PUPR} (2a)
and

vegeration = {P12P31PaaPn PP} (2b)

Since if p,, is true p,,. is false, only true predicates are indicated for notational
convienence.

The above shape representation is a many to one transformation from the
28N state spectral measurement space to a 2™ state binary shape space where
B is the number of bits. Shape space can be depicted graphically using Kar-
naugh maps [6] where each position in the K-map corresponds to a spectral
shape. Typical signatures for vegetation and water are shown along with four
other spectral shapes in Fig. 1. Their corresponding positions in shape space are
shown in the K-map in Fig. 2. K-maps are arranged so that the Hamming dis-
tance (indicated in the upper left corner in the square) between pearest neigh-
bors is equal to one. (The Hamming distance between two binary vectors of
equal length is the number of bit positions which are different). The distances
indicated in Fig. 2 are measured relative to the spectral shape (a) in Fig. 1. The
above suggests use of the Hamming distance between spectral shape vectors as a
natural measure of their similarity.

By using a binary representation, an expression for a class of spectral
shapes E (k) can be derived by simply "OR-ing” the e (i,j) shape vectors com-
puted within the training region for that class. Fig. 3 shows two regions in a K-
map which correspond to two hypothetical spectral shape classes defined by the
logical expressions

EM) ={papPnrarnrersl t{rursrarPnprupralt+
{ropPrarnprarsl t{rPoPupPaPnParsl
={paprPnrors} (32)
EQ)={pnrurarnprPeprs}l t{PurPsrPaPsPars}+
{PurprurnPural t{PurPsPuPnrPaors}

={puprPrars} (3b)

The shaded areas define decision regions in shape space. Since E (1) and E (2)
share the common term { pa; P13 P41 P23 P42 P43 }» the two classes overlap as
shown by the cross-hatched area in Fig. 3. Spectral shapes which fall in overlap-
ping areas may be misclassified as discussed below.
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2. Spectral Shape Classification

This section describes a decision logic classifier based oa the spectral shape
representation described in the previous section. The classifier shown in Fig. 4
consists of a comparator bank which computes the shape vector e (i,j) at each
pixel in the image, a decision logic generator which deduces the logical expres-
sions which define each spectral shape class from examples provided during
training, and decision logic which assigns a class to each pixel in the image.

The decision logic generator deduces a logical expression E (k) for each
class of spectral signatures introduced. Using a procedure for learning conjunc-
tive normal form expressions [9], E (k) is initially set to the product of all possi-
ble band combination terms or predicates, e 8., for N=4

Ek)={puaPaPuPnPuPaPs3PnPuPuPuPsl O]

For each spectral measurement within the training region for class k, all band
pair combinations are examined. If the relation x, > x, is observed, the predi-
cate p,,, is deleted from E (k). In the example in Fig. 3, for class 1, the terms

{PeP13P1aPRPUPUPPA]

are deleted from E (1). The resultant logic expression is equal to (3a). Repeat-
ing this procedure for each training set produces the set of logical expressions
{E (k)} which define the classification logic.

During classification the decision logic evaluates each of the E(k) expres-
sion and assigns classes to pixels. For example, E (1) defines the decision rule

If  (x4>x4) and (x3>x3) and (x 4> x,) and (x4>x3)
Then: Assign y, 1o y(i,j)

where y is the label for class 1. Due to potential overlap betwween classes, ie.,
if the decision regions overlap as shown in Fig. 3, multiple E (k) may be true.
Alternatively, if the E (k) do not completely fill the K-map, then no E (k ) may
be true and no class assigned in some cases. The latter may be regarded as
desirable since one may not want to classify pixels whose spectral shape does
not match any known signature. Otherwise, pixels can be assigned to the
nearest class based on the Hamming distance.

Resolving the conflict of more than one E (k) being true may be handled
in several ways. For example, one could select the class whose logical expression
or decision rule contains the greatest number of terms, or alternatively, the
fewest number of "don’t cares”. Another possibility is to choose the class based
on spatial considerations such as context [8]. Still another method is to use the
characteristics error method [4]. In our initial experimeats the E (k) are
evaluated sequentially so the class assignment is made according to which
expression first evaluates true.
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3. Discussion

The above use of four band data such as Landsat MSS serves to illustrate
the key points of the technique. Current interest is in applying the technique to
sensors with a greater number of bands (e.g., Landsat TM). In initial experi-
ments on Landsat TM imagery, we are using the technique for classifying gen-
eral land cover classes such as water, forest, dense and sparse vegetation,
plowed fields, concrete and asphalt. Relative to the training set, a classification
accuracy of 88% was achieved. This compared to an accuracy of 71% for a
minimum distance classifier over the same area. While these results are not
significant in themselves, the fact that the shape classifier tended to confuse
related SMCs, ie., those with similar spectral shapes such as sparse and dense
vegetation while the minimum-distance classifier confused unrelated SMCs such
as water and asphalt is worth noting.

On going work involves further testing the technique on additional Landsat
TM data sets. Future plans include incorporating the technique within our Mul-
tispectral Image Analysis System [5], and investigating extensions of the method
to multi-temporal data for vegetation classification.
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Fig. 1 Plots of spectral measurement vectors (relative intensity vs. spectral band)
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Fig. 2 K-map representation of spectral shape
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Fig. 3 Declslon regions in K-map for shape classification
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Fig. 4 Black diagram of decision logic for spectral shape classification
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