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Abstract

A new approach to the problem of classifying sur-
face materials in satellite multi-spectral imagery is
described and demonstrated in this paper. Surface
material classes are defined heuristically using rules
which describe the typical appearance of the material
under specified conditions in terms of relative image
measures. A knowledge-based approach allows expert
knowledge of the domain to be used directly to develop
classification rules. An expert system is currently being
developed in the Zetalisp/Flavors programming environ-
ment on the Symbolics 3600 Lisp Machine. An example
of its use in classifying Landsat Thematic Mapper
imagery is presented.

1. Introduction

Traditiopally, statistical pattern recognition tech-
niques have been wused in multi-spectral image
classification applications in land remote sensing . In
using the signal statistics of spectral bands computed in a
training region to represent land cover (surface material)
classes, signal variability between data sets can become a
problem in classification. The goal of the present effort
is to develop an alternate approach to image
classification. One in which expert knowledge of how
materials typically appear in imagery obtained from a
particular sensor under specified conditions can be used
to develop rules for classifying imagery. The intent being
to develop a representation that will allow material types
to be recognized over a wider range of scene conditions
than is possible with pure signal-based techniques. The
approach is based on the use of rules to describe the typ-
ical appearance of surface materials in terms of relative
image measures.

The organization of this paper is as follows: Section
2 reviews the Landsat Thematic Mapper sensor, with
particular attention to its spectral bands. Section 3
points out some of problems encountered with the use of

absolute signal representations for surface material
classes, and motivates the development of relative image
measures. Section 4 discusses how these relative image
measures are computed and how they can be used to
represent surface materials in the form of rules. The
architecture of the expert system is discussed in Section
5, and a demonsiration of its use in classifying Landsat
Thematic Mapprr imagery is contained in Section 6.

2. Landsat Thematic Mapper

The Thematic Mapper (TM) is one of several types
of instruments carried aboard the Landsat satellite. The
TM collects data from seven spectral bands in the visible
and infrared (IR). The spectral bands are summarized in
Table 1. The spatial resolution of the TM is 30 m, except
120 m for the thermal IR band. The locations and
bandwidths of the TM bands were selected to allow the
discrimination of vegetation, land use, and other
resources. For example, band 1 is useful for hydro-
graphic studies and the differentiation of coniferous and
decidous forests. Band 3 is centered on a chiorophyll
absorption band to aid plant species differentiation.
Band 4 can detect ferric absorption (an important indica-
tor for some types of mineralization), and is also impor-
tant for biomass estimation and the delineation of water.
Band 5 can be used to estimate the moisture content in
vegetation, and also serves to differentiate between snow
and clouds. Band 7 detects a hydroxyl absorption band
which is an important indicator of cetain clay minerals.

Table 1 Landsat Thematic Mapper Spectral Bands
Band Number Wavelength (pom) Region
1 045 -052 visible
2 052 -0.60 visible
3 063 - 0.69 visible
4 0.76 - 090 near IR
5 155-175 middle IR
7 208 -235 middle IR
6 104 - 125 thermal IR
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3. Characterization of Surface Materials

For classification purposes, land cover or surface
material classes are generally represented in terms of the
means and covariances of spectral bands and transforma-
tions of speatral bands in prototypical regions in a train-
ing data set”. This statistical description is then used to
define the decision boundaries in feature space which are
subsequently used to classify test data set(s). In attempt-
ing to use the training statistics computed in one image
to classify another, signal variability becomes a prob-
lem”. For example, one image may be hazier than the
other; or images taken at different times may be
different due to changes in the illumination, or in the
biomass. So while there is generally sufficient informa-
tion at the signal level for discrimination, the informa-
tion is not sufficient for classification over a wide range
of conditions. In short, a unique and invariant signature
for each surface mate‘{ial or land cover class does not
exist at the signal level".

The image analyst (IA) familiar with a particular
type of sensor is generally able to recognize the typical
appearance of surface materials in an image over a wide
range of conditions. IAs are able to interpret imagery
under variable conditions because they know the kind of
scene they’re looking at (hence the types of objects and
materials to expect in the scene), and are able to reason
about the appearance of various materials and structures
in the image not only in the visible, but in the infrared
and microwave regions as well. Since humans tend to
describe things in relative terms (e.g., wet fields are
darker than dry fields in the visible and infrared) rather
than absolutely, it seems appropriate to develop a
representation which is based on relative image meas-
ures.

4. Relative Image Measures

Currently, two kinds of relative image measures are
being investigated for the purpose of characterizing sur-
face materials. They involve an analysis of multi-spectral
images pixel-by-pixel across wavelength (spectral signa-
ture analysis), and at a particular wavelength or spectral
band across intensity (histogram analysis).

The spectral signature at (x,y) in the image consists
of the set of individual sensor responses { i; (x,y) } to the
incident radiation 7 (x ,y ,A) where

i (xy)= J;I(x,y,k)rk(k)dh

and r,(\) is the detector response in the k-th spectral
band. By examining the spectral signature, a rough indi-
cation of the appearance of the material as a function of
wavelength can be obtained. Thus, one can speak of
trends in the signature, e.g., the spectral response peak-
ing at a particular wavelength, and use this kind of
description to characterize certain materials. The cell
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structure of vegetation (crops, trees) causes most of the
incident radiation in band 4 to be either reflected or
transmitted, and much of the radiation in band 5 to be
absorbed due to water in the cell structure (Fig 1a). Soil-
like materials on the other hand tend to reflect increas-
ing amounts of radiation as one progresses into the far
infrared (Fig 1b). A comparision of Landsat TM bands
45, and 7 permits vegetation and soils to be easily
discriminated (Fig 2).
The histogram of a spectral band

fe@=#(iGxy)=i)

summmarizes the relative frequency of intensities in that
band over the entire image. If one knows something
about the contents of the scene, it is possible to relate
various modes in the histogram to instances of particular
materials in the image. For example, since the
reflectivity of water in the infrared is quite low, if the
scene contains water, then the darkest regions in the
infrared are likely to be water. Dense foliage (eg.,
crops) tends to reflect most of the incident radiation in
the near infrared, so if crops are present in the scene,
then the brightest regions in the near infrared are likely
to be crops.

Histogram analysis5 involves: smoothing the histo-
gram by convolving it with a Gaussian to remove spuri-
ous peaks, locating zero-crossings in the second deriva-
tive of the smoothed histogram, estimating the parame-
ters of an underlying probability model using a max-
imum likelihood estimation technique, and assigning
pixels into classes (eg., relatively dark or bright) using a
minimum probability of error criterion. The histogram is
approximated by a Gaussian mixture, whose initial
parameters (i.e., relative frequency P (w,), mean p,, and
variance o q2 for each distribution) are obtained from
the zero-crossing analysis. These parameters are then
refined using an iterative maximum likelihood estimation
technique. The estimated mixture is

F)=5P(w,)p(ile,)
q=0

where
l _("_“’)2
20. 2
i | =———0e
p(ile,) Ay

is the conditional probability density for the ¢g-th mode.

Several modes may be required to describe the dis-
tribution of image intensities in a particular band for a
given surface material. For example, six modes were
found in the TM band 4 histogram shown in Fig 3a. The
distributions due to water, crops, and other materials are
identified in Fig 3b. The darkest two modes
corresponded to deep water (reservoir), and shallow
water (river and small ponds), respectively.



To determine if a pixel belongs to a particular
mode, the a posteriori probabilities

P(w, )p(ilxy)=i 1o,)
pli(xy)=i)

for ¢=0,1,..,(Q ~1) are computed. The pixel is assigned

to the p-th mode if

P(a, 1i(xy))> P(e, li(xy))

for p#gq. In the present system, histogram analysis is
performed prior to classification to determine if a pixel
is relatively-dark, or relatively-bright in a given spectral
band; ie., if a pixel belongs to the darkest or bightest
mode(s) in the intensity histogram for that band.

Plo, li(xy)=i)=

5. Expert Systera Architecture

A multi-spectral image analysis expert system is
currently under development at TASC. The system
is being implemented in Zetalisp/Flavors on the Symbol-
ics 3600 Lisp Machine. The Symbolics 3600 is a single-
user multi-tasking workstation built around a special pur-
pose processor developed by Symbolics. Zetalisp is a rich
implementation of Lisp built as a superset of both
Maclisp and Common Lisp. The Flavors object-oriented
programming language is a subset of Zetalisp.

The multi-spectral image classifier architecture is
based on the use of object oriented programming to
modularize the software into "expert system modules”,
and the organization of these modules into a cooperative
hierarchy. Object-oriented programming allows the fus-
ing of data structures and procedures for accessing and
manipulating them into objects. Once an object has been
defined, copies of that object may be instantiated. In
addition to the modularity inherent in object-oriented
programming, interactions between an object instance
and the outside world takes the form of uniform mes-
sages which are handled by the object without requiring
the sender to be aware of the processing involved. Thus,
object-oriented programming offers a powerful tool for
creating systems that are highly modular and quite flexi-
ble due to this "virtual” character of message passing .

Expert system modules are based on object
definitions which function as inference engines. Each
inference engine has associated with it an interpretable
knowledge base containing rules, a factual knowledge
base containing values of attributes, and a procedural
knowledge base containing methods for computing attri-
bute values. Each inference engine module incorporates
a control scheme (e.g., backward chaining) as part of its
definition.

Interpretive or expert knowledge for recognizing
surface materials is expressed in the form of production
rules. A rule consists of an antecedent (if-part) and a
consequent (then-part). The antecedent contains one or
more selectors’, all of which must be true for the rule to
fire (i.e., for the action specified in the consequent part

to be performed). Each selector contains an attribute

and one or more predicate-value pairs. For example, the
selector

(band<4 > band-3)

defines the part of the image where the intensity in band
4 is greater than the intensity in band 3. The rule

If: (band4 > band-3) and (band~4 > band-5)
Then: (assert vegetation)

states that wherever the intensity in band 4 is greater
than that in bands 3 and 5, one can infer that vegetation
is present.

Given these modules, the construction of an expert
system is straightforward and linking systems together
into a cooperative hierarchy (Fig 4) requires minimal
additional programming. The classifier domain and the
information provided by the multiple spectral bands par-
titions easily into a recursive structure in which the ini-
tial image is first examined to determine major classes
(e.g., water, vegetation, and soils). The parts of the
image identified as belonging to each major class are
thcn passed to other expert systems which perform
further differentiation within their sub-domains. This
process continues recursively until the lowest level
classification has been performed.

By using multiple expert systems in a recursive
hierarchy, the rules required to reach low-level
classifications are greatly simplified. In addition, this
architecture allows the system to selectively stop the
depth of classification as desired and to provide approxi-
mate (i.e. higher-level classification) when low-level
classification cannot be performed due to limitations in
the data and/or the knowledge base.

6. Landsat-TM Classification Example

To demonstrate the expert system, a Landsat TM
data set over Lawrence, Kansas is classified into general
surface material (land cover) categories. The thermal
band (band 6) is not used in this experiment due to its
lower spatial resolution. Sharpening techniques currently
under development at TASC® will permit its use in
subsequent versions of the system. USGS topographic
maps and aircraft photos were used to infer ground truth
for assessing the accuracy of the classification.

The scene in Fig 5 is first decomposed into major
classes: water, vegetation, and soil-like materials (Fig 6).
The rules used to extract these major classes are

If : (band4-relative-intensity is dark)
Then: (assert water)

If: (band-4 > band-3) and (band-4 > band-S)
Then: (assert vegetation)
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If: (band4 < band-5)
Then: (assert soil-like)

Next, crops were separated from vegetation, and plowed
fields and concrete-silt were separated from soil-like
materials. Plowed fields have the general spectral
characteristics of soils (i.e., increasing response in the
IR), but tend to be darker than most soils due to their
higher moisture and organic content. On the other hand,
concrete and silt, which also have the characteristic sig-
nature of soils in the IR, are bright relative to other
soil-like materials in the visible. This information was
used to sub-classify soil-like materials (Fig 7). In this
particular scene, crops gave rise to the highest response
in band 4. The following rule extracts crops when
applied to regions of vegetation (Fig 8):

If : (band4-relative-intensity is bright)
Then: (assert crops)

The usefulness of this discriminant will depend on the
period of the growth phase. This being one case in which
collateral information (i.e., the time of year) would be
required.

7. Summary

A knowledge-based approach for classifying surface
materials in satellite multi-spectral imagery (Landsat
TM) was described. Expert knowledge for identifying
surface materials is represented in the form of produc-
tion rules. The rules embody knowledge of how a
material appears in imagery obtained from a particular
sensor. The current implementation uses a cooperative
hierarchy of expert system modules. Each contains rules
for decomposing a class into sub-classes, and uses
backward-chaining inference applied on a pixel by pixel
basis to classify the sub-domain.
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L B I O I L B 0 e

I Plowed Fields 1

Intensity

SUENEOEE IR NGRS NG TS ST SN NS NN

1 2 3 4 5 7 6

TM Band Number

Fig 2. Comparison of spectral signatures of crops and plowed fields

SPIE Vol. 504 Applications of Digital Image Processing VI (1984)/ 51



Relative Frequency

Relative Frequency

I N S N U NN TR RS T

Ll

S I [T S T I E T |

1

Intensity

Intensity

Fig 3. Histogram of TM band 4 with components due to water, crops, and

other materials identified

Vegetation
Expert

Major Class
Expert
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Fig 5 Thematic mapper image over Lawrence, Kansas Fig 6 Major classes: water (black), vegetation (grey),
soil-like materials (white)

Fig 7 Soillike materials: concrete and silt (white), Fig 8 Vegetation: crops (white), trees and other kinds
plowed fields (dark-grey), other kinds of soil-like of vegetation (grey)
materials (dark-grey)
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