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Abstract

The Gerchberg algorithm has been successfully applied to signal enhancement, reconstru-
ction and extrapolation problems where only partial information is available in the space
(time) and frequency domains. 1In this paper, the Gerchberg algorithm is applied to the
iterative interpolation of two-dimensional (2-D) surfaces from irregularly spaced data
points. Specific applications presented are: the generation of hydrographic surfaces
from bathymetric data obtained from the hydrographic airborne laser sounder (HALS) and the
generalization of wind-flows from cloud imagery obtained from the Geostationary Operational
Environmental Satellite (GOES). Experimental results obtained using a VAX 11/780 and FPS
120-B array processor system are presented.

Introduction

In signal processing one frequently encounters the problem of recovering a signal from
partial information in the space (time) and frequency domains. Each partial specification
is usually not sufficient to determine the entire signal; however, taken together there may
be one solution or a class of solutions that are consistent with all the information.

A scheme of reconstruction which affords effective utilization of partial information
in the space and frequency domains is the iterative formulation, in particular, the Gerch-
berg algorithm. The Gerchberg algorithm and its variants iterate back and forth between
the time and frequency domains substituting known information into the estimate at each
iteration step. They have been applied in problems related to bagdwidth extrapolation+,
signal extrapolation4, and reconstruction from phase or magnitude~. This paper addresses
the related problem of interpolation, given data whose region of support can be highly
irregular under the constraint that the data follows an underlying smooth (in some sense)
model.

The organization of this paper is as follows: The next section describes the forwu-
lation of the Gerchberg algorithm for interpolation and discusses its stability. Issues
concerning the implementation of the algorithm on an array processor are then presented in
the following section. Two application areas in which this technique has been successfully
applied are described in the last two sectioms.

Interpolation using the Gerchberg Algorithm

In this section the use of the Gerchberg algorithm to interpolate a 2-D surface to
known data subject to a spatial bandwidth (smoothness) constraint is described. A block
diagram of the Gerchberg algorithm is shown in Fig. 1. The objective is to interpolate
aa M x N point surface to K data points dk located at (ix,jkx) for k =0, 1, ... (K-1).
By repeatedly substituting the data back into the estimate of the surface and lowpass
filtering, the Gerchberg algorithm attempts to arrive at a solution which fits the data
and is consistent with the spatial frequency constraint. At each iteration, the data is
substituted into the estimate sjj according to

Sij ={1 - 5(i-ik,j—jk)} Sij + é(i—ik,j—jk)dk (1)
for kx = 0,1,...(K-1) where é(i—ik,j—jk) = 1 at the K data points and zero elsewhere.
Letting s = {sij} be an MN x 1 vector, Eq. 1 can be written in matrix notation as

s = As + Bd (2)

where A is the MN x MN matrix {1 - G(i—ik,j—jk)} and B is the MN x K matrix {8(i-1i ,j—jk}
for k = 0,1,...(K-1). After forcing the surfdce to equal the known data, the spectrum
is forced to be within the specificd bandwidth. Letting F denote the filtering operation:

Sij = 0 for |i|>wX and |J|>Wy (3)
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Figure 1. Block Diagram of the Gerchberg Algorithm

where S;: 1s the discrete Fourier transform (DFT) of SRR the interpolation may be des- .
cribed %} the l-st order iteration:

s(t+l) = AFs(t) + BRd (&)

where s(t) is the t-th estimate for t = 0,1,...,T and the initial estimate sij(O) = 0.
For Eq. 4 to converge, the moduli of the eigenvalues of the matrix AF must be” between zero
and one. If Eq. 4 is represented by the mapping

s(t+1l) = Ts(t) (5)

from the t-th to the (t+l)-st estimate where || s(t) || < «» and I' represents the combined
operations of spatial replacement and filtering, a sufficient condition for Eq. 5 (hence
Eq. 4) to be stable is that T be a non-expansive mapping4; i.e.,

|| Trs(e) - Tule) [| < || s(e) - ule) || (6)

for any s(t) and u(t). The Gerchberg and related algorithms have been shown to be stable
for the application of recovering a signal from partial information in the time and
frequency domains? . Substituting Eq. 4 into the left-hand side of Eq. 6 vields

|| rs(t) - Tule) || = || AFs(t) - AFu(t) |f{. 7N

The replacement operation A forces the differences between the filtered estimates to be
zero at the K data points and leaves the filtered estimate unchanged at the other points.
Therefore

'] Ts(t) - ruCe) || < || Fs(t) - Fu(t) || (8)

where Eq. 8 holds with equality only when the filtered estimates Fs(t) and Fu(t) are
identical at the K data points. The filtering operation F forces the spectrum to be equal
to zero beyond the specified W, and Wy bandwidths so that

[l Fs(t) - Fut) (] < [] s(t) - u(e) [| (9)

where Eq. 9 holds with equality only when the S(t) and U(t) spectra are identical outside
the passband. Combining Eq. 7 through Eq. 9 yields Eq. 6 which holds with equality when
the estimates equal the data at the X data points and the support of the spectra are
contained in the specified passband. Thus T is non-expansive and the interpolation algori-
thm is stable.

For the solution s to be unique, the number of discrete Fourier components passed by
the filter (single-sided) must be less than or equal to the number of data points processed
(i.e., WW, < K). In addition, for the solution to converge to the true solution, the
number of data points must be equal to or greater than the number of non-zero discrete
Fourier coefficients in the DFT of the true surface. The rectangular filter function
(Eq. 3) coarsely delimits the frequency response of the interpolator. Since the support
of the true DFT and the filter will generally be different, the estimated solution will
be an approximation to the true signal.
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Implementation Considerations

This section describes the implementation of an interpolator based on the Gerchberg
algorithm on a VAX 11/780 and FPS 120-B array processor (AP) system. A comparison of
the Gerchberg algorithm with other interpolation techniques (polynominal fitting, least-
squares approximation, and local area interpolation, e.g., cubic spline) was performed®.
The Gerchberg algorithm was found to be computationally more efficient than polynominal
techniques in terms of the number of operations performed. The regularity of the computa-
tions and the ability to easily change the order of the interpolation was significantly
better than local area techniques. Finally, the memory requirements of the Gerchberg
algorithm were lower than least-square techniques (which require the generation and
storage of the orthonormal basis functions).

The regularity of the alternating spatial replacement and filtering operations (Egs. 2
and 3) allowed an efficient implementation of the Gerchberg algorithm on the AP. A program
running in the VAX reads the data files from disk, sections the data set into sub-blocks
for processing, and coordinates the operation of the AP, The host supplies a sub-block
of data, the number of iterations to be performed, and the filter bandwidths. The AP
returns the maximum difference between the interpolated surface and the data:

€ = maximum {s, . =~ d,} (10)
i3 k

(This is computed prior to the last replacement operation since each replacement operation
forces this difference equal to zero). When the differences in Eq. 10 is less than a pre-
determined threshold eg, the interpolated surface is read out of the AP.

To demonstrate the behaviour of the Gerchberg algorithm and to verify the operation
of the interpolator, a 64 x 64 point synthetically generated terrain elevation surface
was sampled and an interpolation was performed. (Given the one-quarter megabyte of data
memory in the AP, up to 64 x 64 point interpolations can be performed at a time). A 2-D
perspective plot of the original terrain surface is depicted in Fig. 2a. Half-power
bandwidths (single-sided) in the x- and y-directions of W, = 8 and W, = 5 frequency bins
were computed for this surface. The surface was sampled and a sparsz array of approxi-
mately 60 data points was generated. The results after 1, 10, and 100 iterations are
shown in Figs. 2b-2d. Peak differences between the estimated surface and the data (Eq. 10)
were 117.7, 83.34, and 17.61 respectively. The corresponding root-mean-square (rms)
differences were 4.37, 2.31, and 0.22,

In practice, since the original surface is unknown, the bandwidths must be determined
indirectly. A technique successfully used to interpolate the HALS and GOES data ini-

tializes the filter bandwidths to a low value (typically Wy = W, = 1). After performing a
specified number of iterations, if the difference € is greater %han the threshold e, the
bandwidths are increased by some predetermined increment. 1In addition, these differences

are an indication of the degree to which the algorithm has converged and can be used to
terminate the iteration automatically without supervision.

As stated earlier, the M and N array dimensions are determined by the amount of data
memory available in the AP. In order not to be limited by the AP memory, a scheme for
partitioning large data sets into sub-blocks for processing was developed. Local area
techniques have been found to be superior to_global interpolation techniques, particularly
when the order of the interpolation is large7. Since the bandwidths of sub-blocks are
adjusted independently, a method of block processing the data which maintains continuity
across the data set is required.

If x is a P x QO data set (i.e., a sparse array of data points) and s is the M x N array
(M< P and N< Q) which represents the domain of the interpolator, the blocking scheme is as
follows: Read the first M x N sub-block from x, interpolate a surface s to fit the data in
the sub-block, and write the result back into x. If x is processed in a raster fashion
from left to right and top to bottom, the second sub-block in x initially contains the
right-most M-element column of the previous surface s plus (N-1) columns of data. The
second sub-block is read, processed, and written back into x. After covering the top M
rows (of Q elements each) in x, the interpolator moves down (M-1) rows and continues to
read, process, and write x. This continues until all P rows of x have been processed.
Continuity is thus maintained across the data set by using the edge row and/or column from
adjacent sub-block(s) previously processed as boundary values for succeeding sub-blocks.

An added advantage of this technique is that it is performed in-place thus reducing storage
requirements. This method is applied specifically to interpolate the bathymetric data in
the next section.
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Figure 2. Experimental Verification of Gerchberg Algorithm

Interpolation of Bathymetry Data

This section describes the interpolation of 2-D surfaces from data obtained from the
hydrographic airborne laser sounder (HALS). HALS is a laser bathymetry device for measur-
ing the depth of coastal waters (up to 50 meters in depth depending on water clarity).

The data is collected in a spiral sampling pattern (Fig. 3) traced out by a pulsed blue-
green laser beam scanned in an elliptical pattern and translated by the motion of the air-
craft. The 256 data points shown in Fig. 3 represents only part of the 4400 depth measure-
ments made in the 1000 x 100 meter survey area processed. The measured depth is proport-
ional to the time-delay between the air-water and bottom return pulses.

The survey area was gridded into a 512 x 64 block of data (spaced 2 meters between
samples). The array was partitioned into eight 64 x 64 sub-blocks and was processed as
described earlier. 1In each sub-block, 20 iterations were performed at a given bandwidth.
If the peak difference between the data and the interpolated surface was greater than a
threshold (ep = 3 or 10% of maximum depth), the bandwidth was doubled. The Wy and W
bandwidths were initialized to one frequency bin (0.0039 cycles/meter) at the start 3
processing each sub-block. The resultant surfece is shown in Fig. 4. Since the hydro-
graphy was fairly smooth in sub-blocks 0-3 and 6-7, the corresponding bandwidths were
small (Table 1). In the shoal area (sub-blocks 4-5), higher bandwidths were required by
the interpolator in order to generate a surface of sufficient order to fit the measure-
ments.. The 512 x 64 sample survey area was processed in approximately 5 minutes under
normal system loading.

SPIE Vol. 359 Applications of Digital Image Processing IV (1982) / 229



DEPTH SOUNDINGS

DEPTH (Meters)

gt
g

f

DIRLCTION OF FLIGHT

Figure 3. 256 Sample Section of Figure 4. 512x64 Point Surface

HALS Bathymetry Data Estimate (1000x100
meters)

Table 1. Results of HALS Interpolation

Sub-Block "Peak Difference Bandwidth (x 0.0039%9 cycles/meter)
0 .26
.58
.28
.38
.40 3
.83
.99
.13
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Generalization of Atmospheric Wind-Flows

This section describes the interpolation of wind vector fields from data obtained
from two consecutive frames of GOES cloud imagery (Fig. 5a). An initial wind vector
field on a square grid was first computed by calculating normalized correlation coe-
fficients p for 32 x 32 sub-blocks and their corresponding search windows. The offsets
of the correlation peaks indicate the cloud displacement in x and y, and the maximum
correlation values are indicative of the goodness of fit between frames. These initial
vectors were then edited to include only those vectors that were due to clouds with 2
kilometer base heights. An additional screening was then performed to retain only those
vectors which correspond to high values of p, thereby mitigating the effects of changing
cloud morphology on this procedure. The remaining vectors (Fig. 5b) are then used as the
basis for interpolation.

For the present example, the Gerchberg iteration was applied to the x- and y- compon-
ents of the wind field separately. F¥or each component, 20 iterations were performed at
a given bandwidth, similar to the bathymetric processing. The interpolated wind field is
shown in Fig. 5c¢. This particular example did not utilize the block processing capability,
although with much larger data sets, it would have been necessary.
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Figure 5. GOES Wind Field Generation
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Summary

The Gerchberg algorithm has been shown to be an effective interpolation tool for
genevating smoothly varying surfaces from incomplete data. A description of the algorithm
was presented as well as a discussion of its stability behavior. Several key issues re-
garding its implementation were presented including

. Array processor considerations
° Adaptive bandwidth processing
° Block processing with boundary constraints.

Finally the effectiveness of the procedure was demonstrated by interpolating examples of
bathymetric and wind field data.
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