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Abstract. Aniterative optical matrix-vector processor that computes the adap-
tive weights for a phased array radar is described. Multidimensional adaptivity
in both target angle and velocity is achieved by lexicographically ordering the
antennaelements as they are fed to the optical processor. Complex weights are
computed by spatial multiplexing of the vector and matrix inputs to the system.
The error sources of the optical system and the convergence of the iterative
algorithm are analyzed, and experimental demonstration of the accuracy and
performance of the system is included. This novel processor is found to perform
quite adequately and to be most appropriate for advanced multidimensional
adaptive phased array radars.
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1. INTRODUCTION

Adaptive phased array radar (APAR)'~3 represents a formidable
signal processing problem of considerable current interest*5 and one
for which advanced signal processing concepts and algorithms are
necessary. The real-time and parallel processing features of optical
systems make them attractive candidates for this application. How-
ever, the nature of the APAR problem requires a new optical process-
ing system that performs more general functions besides the Fourier
transform and correlation operations normally realized in such sys-
tems.® In this paper, we describe a new and general purpose optical
processor, discuss its application for APAR processing, provide exper-
imental demonstrations of its use in APAR processing, and analyze
the accuracy and performance of the system for this application.
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In Sec. 2, we describe the APAR signal processing problem. Com-
putation of the optimum set of adaptive weights to apply to the
receiving elements of the antenna to steer it in a desired direction and
to null all noise sources in other directions is formulated as the solution
of a matrix-vector equation requiring the inversion of a matrix. In Sec.
3, we describe an iterative optical matrix-vector processor (I0OP) that
we have fabricated’ to address this problem.®? We also discuss how
complex values are accommodated on this system and how conver-
gence of the iterative algorithm is achieved. We also advance an error
source model for the processor. The experimental use of the IOP to
cancel noise sources distributed in angle is then demonstrated in Sec. 4.
In Sec. 5, we extend our theory to the case of multidimensional
adaptive antennas. Experimental demonstration of the use of the [OP
for an antenna adaptive in both space and time is included in Sec. 6
together with an initial error source and accuracy analysis of this new
optical processor for this application.

2. ADAPTIVE PHASED ARRAY SIGNAL
PROCESSING

For simplicity, we initially consider a linear phased array antenna
with adaptive steering and noise null cancellation in angle (6) only.
In Sec. 5, we extend this theory to the case of multidimensional
adaptive antennas. Consider the linear (1-D) phased array antenna
system of Fig. | with N isotropic elements spaced d = A /2 apart
(where A is the wavelength of the radar). In the far field of the
antenna (i.e., at ranges R >>(Nd)2/)\R), we assume a signal
s(t)exp(jwt) at an angle 6, (this represents the direction in which we
wish to steer the antenna and obtain maximum response) and M
uncorrelated, zero-mean, narrow-band interference sources rp,(t)
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Fig. 1. Simplified pictorial block diagram of an adaptive phased array
radar processor.

exp(jot) at angles 8, ,...,0y. All angles are measured with respect
to boresight (the normal to the array). The objective of an APAR is
to point the antenna in the direction 6, and to null the antenna
pattern in the directions 8, of the interference sources. With the
signal and interference sources in the far field of the antenna, the
radiation incident on the array can be described by the superposition
of plane waves from the directions of each source. Since the path
difference between two antenna elements isd sin 6= (Ag sin6)/2, the
signal received at the n-th antenna element is

M
2,(1) = S(t)ej(wt-f-nnsineo) + 2 rm(t)ej(wt-f-rrnsinem) )

m=li

Fach of these N antenna outputs, z(t) = {z,(t)}, is multiplied by a
complex weight w = {w_}, and the output from the receiver is the
coherent summation of the products of the weights and the received
signals:

(N=1)
Vour( = 3 wpz() = wiz(t) . 2
n=0

In Eq. (2) and in our future descriptions, we employ vector and matrix
notation to describe the various signal components of the system.
Lower (upper) case letters with an underbar denote vectors (matrices).

The antenna pattern that is obtained from such a receiver is
described by an angular response E(6) which is the inverse Fourier
transform of the weighting pattern {w,}. The attractive feature of a
phased array radar is the ease with which one can steer the antenna. To
direct the antenna to ¢ = 6, we simply weight the antenna outputs by
the conjugate phase pattern w, = exp(—jmnsinf,;). When uncorre-
lated noise is present, due to uniform background radiation or thermal
noise in the antenna itself, this weighting maximizes the signal-to-noise
power ratio (SNR) at the antenna’s output.2 However, when direc-
tional interference is present, this simple weighting is not optimal, and
the weights must be computed adaptively as a function of the changes
in the rf noise environment. This is the APAR signal processing
problem with which we are concerned. In Ref. 9, we show that the
vector w which minimizes the mean square error between the signal
and array output satisfies the matrix-vector equation

Mw = Pys* , 3)
where M = z*(1)z1 (1) the covariance matrix of the received signal

plus interference; P = s*(t) s(t) the signal power; s =exp(jmnsinfy) is
the steering vector. In Ref. 9, we also show that the solution w to Eq.
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Fig. 2. Schematic diagram of the iterative optical matrix-vector
processor.”

(3) also maximizes the SNR at the output of the antenna. These results
are in agreement with the conclusions in Refs. 1, 2, and 4.

3. ITERATIVE OPTICAL PROCESSOR

From Sec. 2, we found that the solution of the optimal adaptive
weights w that will steer an antenna in a direction s* and null
directional interference noise described by the covariance matrix M
must satisfy the vector-matrix equation

Mw = s* . 4
The constant multiplicative factor Py in Eq. (3) does not affect the
computed solution w. In Refs. 7-10, we described an iterative optical
processor (10P) that can solve matrix-vector equations or systems of
linear algebraic equations such as Eq. (4). An improved version of
this 1OP is shown schematically in Fig. 2. The input at P is a linear
array of LEDs or laser diodes (LDs), whose outputs at time j
describe a vector x(j). This vector output is imaged vertically and
expanded horizontally to uniformly illuminate row m of P, with the
input x . A 2-D mask whose transmittance is described by a matrix H
is placed at P,. The light distribution leaving each column of H is
collected on a separate photodetector at Py. The output from the linear
photodetector array at P, is thus the matrix-vector product Hx(j).

With such a matrix-vector processor (as described in Refs. 11, 12
and more recently in Ref. 13) as the basic element of our system, we
subtract an external vector y from Hx(j), multiply the difference by a
constant acceleration parameter w, and add the result to the prior
x(j) input to obtain a new iterative input x(j+ 1) for time j+ I. This
IOP thus realizes the Richardson algorithm!4 in the form

xG+1D = x() + o] Hx() —y] . (5)
When x(j) = x(j+1) = x, Eq. (5) reduces to

Hx =y, (6)
and the system’s output is

x=H"y %

or the solution of the matrix-vector equation in Eq. (6). Such a
system can be directly used for the APAR problem described in Sec.
2and summarized in Eq. (4). We simply use the covariance matrix M
as the matrix H, the steering vector s* as the exogenous vector y, and
the solution vector x is then the desired set of adaptive weights w to
be computed.

In Ref. 7, we detailed the fabrication and performance of the
laboratory IOP system we assembled. As the inputs, we used ten
LEDs which were interconnected to the mask by a fiber optic system.
A film transparency is used as the mask in our present laboratory
system, although a real-time 2-D light modulator such as the CCD-
addressed liquid crystal light valve!s can provide a real-time adaptive

OPTICAL ENGINEERING / September/October 1982 / Vol. 21 No. 5/ 815



CASASENT, CARLOTTO

mask for this system. Alternatively, a new optical systolic array
architecture's using a 1-D acousto-optic cell at P, of Fig. 2 with
feedback of the photodetector outputs to the acousto-optic cell’s
inputs!’ can also be used to provide a fully real-time iterative optical
matrix-vector processor. For now, we consider only the system of
Fig. 2. The height of the matrix mask used at P, is4 mm, and it was
chosen to match the height of the detector elements in our linear
photodetector array at P;. We also chose the horizontal spacings
between detector elements, and thus, in our present system, we
simply place the output photodetector array in direct contact with
the mask at P,.

Since the outputs from the LEDs and the transmittances of the
mask elements are real and positive, this system can multiply and
add only positive numbers. In the APAR problem, the elements of
the matrices and vectors are complex valued. Thus, to provide the
complex-valued matrix-vector product in Eq. (4), we employ spatial
and temporal multiplexing. We realize a bipolar matrix-vector prod-
uct y = Hx by scaling, biasing, and partitioning H such that it is a
unipolar matrix. We then operate the IOP twice. On the first cycle,
the positive values x; of x are the inputs, and on the second cycle the
negative values x, of x are the LED inputs. In the postprocessor, we
form the difference Hx, — Hx, of the two successive matrix-vector
outputs and scale and bias the result to provide the new inputs for the
next iterative cycle. This procedure is detailed in Ref. 7, where we
discuss how this procedure reduces the required space bandwidth
product of the mask and enables all fixed pattern detector noise to be
canceled. To enable the system to perform complex-valued matrix-
vector multiplications, we partition the matrix and the vectors in the
system as
M ~Min
y = , H = » X = (8)
2'im Mim Mg ¥im
where the subscripts re and im denote the bipolar real and imaginary
parts of the indicated vectors and matrices. To accommodate com-
plex-valued matrix-vector operations on the system, we bias M,
forma unipolar matrix as before, partition it as indicated in Eq. (8),
format the vectors x and y as in Eq. (8), and operate the system for
two cycles with the positive- and negative-valued vector elements as
the inputs. We detail this complex-valued algorithm and demon-
strate its use for a specific example in Sec. 6. In Sec. 4, we describe an
alternate complex-valued algorithm and demonstrate its use on the
10P system of Fig. 2.

A new feature included in the system of Fig. 2 is the presence of the
acceleration parameter w. (We retain the standard notation w for the
acceleration factor. This will cause no confusion with the radian
frequency w in practice.) Proper selection of w ensures convergence
of the iterative algorithm and speeds the convergence, as we now
discuss. Since M is a positive definite Hermetian matrix, its N
eigenvalues A are positive, and thus to ensure convergence of Eq.
(5), we require w to satisfy’

[ — @, | < 1. 9)

This is ensured by the choice’

—1/2

’

o =|[H||" = (zz LI (10)
m n

where the Euclidean norm of H (the square root of the sum of the
squares of the elements h , of H) is represented by the symbol
shown. When the spatial multiplexing in Eq. (8) is used, ||H|| =
VZ|[M]| is used in Eq. (10).

The accuracy and performance obtainable for any analog or
optical processor is an issue of primary concern. In the error source
model we have developed for the IOP, we separate the errors of the
system into spatially-fixed and temporal errors. In terms of these
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errors, we describe the observed output z = Hx obtained from the
matrix-vector multiplier as the exact result z,, ., plus two terms:

z= Zexact + Zspatial + Ztemporal’ (an

The spatially fixed errors in the 1OP are due to nonuniformity and
nonlinearity in the LED and detector responses, spatial variations in
the transmittances of the fiber optic interconnections, and errors in
the transmittances of the elements of the mask. We can correct for
the source and detector errors by multiplying the inputs to the LEDs
by a fixed correction vector stored in read-only memory. The resid-
ual spatial nonuniformities that remain can all be transferred to the
mask plane. This is quite attractive since we can then correct for all
residual spatial errors by properly modifying the matrix data as they
are recorded on the mask. For our laboratory system, the measured
residual spatial error without a correction mask was £0.8%.7 This
TEPTESENts Zgpayial in Eq. (11) under uniform LED illumination.
Since it is adequate for our applications, as we will see, no further
corrections for it were included in our present system. The temporal
time-varying component of the system noise z,. inorar it Eq. (11) is
due to the detector. It was measured to be £0.4% for our system. As
before, this is sufficiently small that cooled detectors and other
measures to decrease this noise component were not used. This latter
error source represents the fundamental limit and performance of
the JOP. In Sec. 6, we use our error source model in Eq. (11) and
present an initial analysis (with experimental confirmation) of the
performance of the IOP for a multidimensional adaptive antenna.

4. ANGLE ADAPTIVITY USING THE 10P

As aninitial example of the use of the IOP for APAR processing, we
consider interference sources distributed only in angle as described
in Sec. 2. We also use this initial example to detail an alternate
method to process complex-valued data on the IOP. We consider a
two-element array with one interference source at an angle 8, with
noise power P, (per received channel) and with additive receiver
noise of N, watts per channel. We ignore the signal strength in this
present treatment. The received signals at the two array elements are

7, =%ty ;
Z, = % ty,, (12)

where x, and y, are the interference voltage and noise voltage in
channel n. The voltage x, will lag x; by a phase angle y = 7sin§,
(where d = Ag/2 is assumed), and the noise voltages y, will be
independent of each other and of the x,, signals. For this case, the
covariance matrix is

P, + N, P, exp(—jv)
M= : (13)
P, exp(+jy) P, + N,

In thisinitial experiment,® we set w =1 in Eq.(5), and to avoid the
need to add the original input to the difference between the matrix-
vector product and the exogenous vector, we place[ 1 — M] on the
mask, where I is the identity matrix. The iterative algorithm of Eq.
(5) now becomes

xG+ D =x0)[1-M+y.

For the specific case chosen, we used P; = 0.1 watts and N, = 0.5
watts (these N, and P, values ensure convergence, and thus the
acceleration factor can be unity) and chose 8, such that A =4m/3.
The required matrix mask is thus

0.4 0.1 exp(—j4m/3)
(1-M]= ) (14)
0.l exp(j4m/3) 04
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To realize the complex mask transmittance in Eq. (14), we introduce
an alternate technique!8 in which a complex-valued number m’ (one
component of the mask) is represented by three real and positive
components (mg, m;, and my) which are the projections of the mask
elements along axes atangles 0°, 120°, and 240° in complex space, i.€.,

= mgexp(j0) + m{exp(j2m/3) + myexp(j4m/3) . (15)
For the specific matrix in Eq. (14), the phase angles of its four

components are 0°, 120°, and 240°, and thus we can represent Eq.
(14) by the three matrices

0.4 0 0 0.1]
[I—-M]; = s, [I-M]y = ,
0 04 10 0
o ol
[l -M]; = . (16)
(0.1 0]

We note that each of these matrices and all of their elements are
positive. As the mask used at P, of Fig. 2, we thus spatially multiplexed
these three matrices, and as the formatted matrix mask we used

040 [0 0 |0 0.1

|
0 04(010 [0 0

0 01|040 [0 0
[I-M] = | | . amn
06 0 |0 04010
0 0 |0 01]040

010 [0 0 [0 04

For the case of two adaptive antenna elements, there will be two
complex-valued weights. We represent these by w, and wy,. Each of
these weights will have three positive-valued elements with a decom-
position similar to that used in Eq. (15); i.., for w,, its three positive
projections are w,,, W\, and w,,, with a similar notation for wy,. The
input vector w to the first six LEDs is formatted in terms of the six
positive numbers corresponding to the three projections of each of
the two adaptive weights as

W = [Wa0, Who Wais Whis Wag, Wil - (18)

The mask was arranged as described by Eq. (17), the input vector
was formatted as described by Eq. (18), and the steering vector was
chosen to be

s* = [0.3,03]" (19)

for our experiments. The coefficients in the steering vector in Eq.
(19) were chosen to simplify the solution. This steering vector corre-
sponds to the boresight direction. Solving Eq. (4) for this case, we find

= (0.3/0.35) [0.6 — 0.1 exp(—jm/3),
0.6 — 0.1 exp(+jm/3H]" . (20)

In Fig. 3, we show the outputs from the six relevant photodetector
elements of concern in the output of Fig. 2 at iterations j =0, 1, and
5. In Fig. 3, the six photodetector outputs shown correspond right-
to-left to the six w componentsin Eq. (18). The six measured output
voltages after the sixth iteration were found to be

ZO,N—l{

'-2,N-1

2N'—l,n N'-1,N-1

N
|
N
=3
-
~
z

'-2,0 -2,1
'-1,0 '-1,1
Fig. 3. Pictorial description of the antenna receiver for an array antenna
with space and time adaptivity.

[0.5118,0.5118, 0.0834, 0, 0, 0.0834] . 21

These compare very well to the exact results in Eq. (20) after an
infinite number of iterations. In the order and format in Eq. (18),
these exact results are

[0.5142,0.5142,0.0857, 0, 0, 0.0857] . (22)

Comparing (21) and (22), we find that the JOP’s experimentally
calculated weights are within about 19 of the exact values. Thus, the
performance of this optical processor appears to be excellent for this
simple initial example.

5. MULTIDIMENSIONAL ADAPTIVITY

We now consider extending our adaptive antenna theory of Sec. 2 to
include adaptivity in velocity or time (further extensions such as
polarization and multipath compensation are possible using the
techniques to follow, but the details of such formulations are beyond
the present scope of this paper). The adaptive weights w = {w}
described in Sec. 2 only affect the spatial frequency response of the
antenna and hence the angular position of nulls in the antenna
pattern. To control the temporal frequency response of the array, we
require taps on the time-history outputs from each antenna element.
In Fig. 3, we show a 2-D space-time antenna array. There are N
antenna elements and N spatial weights as before. These provide
adaptivity in space or in angle. To provide temporal frequency
control, we include N’ taps on each antenna element with time delays
7 between each. Wechoose 7 to satisfy 7 = Ap/4Vax, Where vy, is
the blind speed of the radar (i.e., the maximum uniquely resolvable
velocity of an object moving relative to the antenna). These provide
adaptivity in time or target frequency or velocity. The processor for
such an adaptive antenna thus requires the calculation and applica-
tion of N XN’ weights Wp o at the g,y tap points shown in Fig. 3.
We first formulate the required processing as a 2-D extension of the
theory of Sec. 2. We then provide an experimental demonstration of
the IOP in the solution of such a problem and an analysis of the
accuracy of the results obtained (Sec. 6).

We describe this multidimensional adaptive antenna problem by
extending our model and analysis of Sec. 2 to include a target or
signalat 6, with a velocity vy and M interference sources at angles 6,
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with M velocities v ,...,vy,. The outputat the(n, n’) element of the
antenna in our 2-D model of Fig. 3 is thus

2 (1) = S(t)ej[wt+7rnsin00+1-r(4-r/)\R)n’v0]
n,n

M
+ 2 rm(t)ej[w[+”n5in0m + m(47/ AR) W'V, ] i (23)
m=1
where —m/2<<0< /2 and —(47/ \)<v<(47/\). The output from

the receiver is now more complex than in Eq. (2) and is a 2-D
summation given by

(N—1) (N—1)
Vout() = 2 z zy p(OWy o (24)

n=0 n'=0
The weights are now a 2-D function w,, ... They satisfy the more

complex system of linear algebraic equations

(N—1) (N—1)
2 my k' n,n’'%n,n’ > (25)

n=0 n'=0

Few T

where my .+ , - in_Eq. (25) describes the elements of the new
covariancé matrix M for the signals in Eq. (23) and where the
steering vector 1s now
S*k,k’ — e—jn[k sinfy + (47/ Ap YK vo) ) (26)
Equation (25) is in the general form of a matrix-matrix equation.
Since the IOP (Sec. 3) can perform only matrix-vector multipli-
cations, we must convert Eq. (25) into the form of a matrix-vector
equation. We achieve this by performing a lexicographic mapping of
the 2-D antenna outputs in Eq. (23) onto a vectorZ(t) = {z(t)}. Fora
two-element antenna (N = 2) with two taps (N’ = 2) per element, we
can relate Z to the elements z,, . of z by

Zo(t) = z5o()
7|(t) = Zm('-)
Ez(t) = Zlo(t)
Z3(t) = z;,(v) . @7
We describe a new covariance matrix E in terms of Z and a new
steering vector§ that is ordered similar toZ. The resultant weights to
be computed are similarly ordered and denoted by . With this new

notation, we solve the new matrix-vector equation

3* = Mw, (28)

where § and W are lexicographically ordered and where ﬁ is the
covariance matrix of the similarly lexicographically ordered received
signals Z in Eq. (27). The solution of Eq. (28) on the IOP of Fig. 2
now follows directly. The space bandwidth product required for the
input LEDs, the mask, and the output detector are increased by the
lexicographic ordering used. If this becomes prohibitive, one can
operate the system successively with one column vector for one of
the 2-D functions being the input at successive cycles. This alternate
technique for performing matrix-matrix multiplication on a matrix-
vector processor was detailed earlier in Ref. 19.

6. MULTIDIMENSIONAL ADAPTIVITY USING
THE IOP
In this section, we provide an experimental demonstration of the use

of the 10P for multidimensional antenna processing as formulated
in Sec. 5. We also emphasize the accuracy of the resultant system
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with attention to the error source model formulated for the IOP in
Sec. 3. We use two performance measures to describe the perfor-
mance obtained from our adaptive radar processor. Our first per-
formance measure used is the SNR of the resultant antenna pattern.
For the spatially-adaptive antenna, the SNR of the output is

Pyl E(6y,))|?

SNR(j) = — , (29)

S PLlE®,.0)

m=|

where Py is the strength of the signal located at ¢, and P, is the
strength of the interference source at 6. For the spatially adaptive
antenna (Sec. 2), the output antenna pattern E is a function of angle
and the iteration number j. The numerator in Eq. (29) describes the
total power in the antenna patternat the location 6 of the source, and
the denominator is the sum of the total power in the antenna pattern at
the location of the M noise sources after application of the adaptive
weights. For the multidimensional antenna with adaptivity in space 8
and time (or velocity v), the output SNR is a function of the iteration
number j as well as angle 8 and velocity v. It is described by

Py|E(6y, vg.))|2

SNR()) = — . (30)

S PolE@y v DI

m=|

As our second performance measure, we use the processing gain
(PG) defined as

PG(j) = SNR(j)/SNR(0) . (31

The denominator in Eq. (31) describes the initial output SNR with
no adaptive weighting (i.e., after iteration j = 0). The numerator
denotes the SNR that results after j iterations. This PG parameter is
thus a measure of the output SNR improvement obtained after j
iterations. We expect it to increase with j. It is thus most useful in
providing a measure of how various choices of the signal and noise
scenario and the acceleration parameter w affect the speed with
which our iterative algorithm achieves convergence or a given per-
formance (i.e., a prespecified antenna pattern SNR). To graphically
present our results, we will plot the output antenna pattern obtained
for the adaptive weights calculated from the IOP. We also compute
the output SNR and PG defined above for each of the resultant
antenna patterns as a function of the iteration index j and other
system and scenario parameters of concern.

We first consider the effect of the acceleration parameter on the
number of iterations required for the algorithm to converge to its
steady-state value and on the performance obtained after a given
number of iterationsj. As our performance measure, we use PG(j) in
Eq. (31), where this PG represents the amount by which the various
interference sources are nulled by our adaptive algorithm. We found
this to be a function of the strength P, of the interference sources
(for a fixed antenna or receiver noise N, and signal strength P). To
determine the importance of using Eq. (10) for the acceleration
parameter rather than w = | as we used in Eq. (14), we considered
various signal powers Py, interference source powers P, (we con-
sider only one noise source of power P,), and antenna or receiver
noise powers N.. In Fig. 4, we highlight our results by plotting PG
versus the iteration index j for the two different acceleration parame-
ter measures w = | and w =|| H|[™'. In Fig. 4(a), we consider the
case when Py >>P, =N_, and in Fig. 4(b), we consider the case when
P, =P, =N_. These data (and much additional testing not included
in these drawings) show that SNR increases as in the interference
power P isincreased with a null depth of 40 dB obtained for a noise
source of strength P, = 0.1 [Fig. 4(a)] and 2 much poorer 9 dB null
depth obtained for a noise source of lower strength P; =0.001 [Fig.
4(b)]. This is in agreement with the general performance of an
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Fig. 4. The processing gain PG(j) = SNR{j)/SNR{0) describing the out-
put SNR improvement obtained with different acceleration parameter
choices as a function of the number of iterations j: (a) interference power
p; = 0.1 watts; (b} interference power p; = 0.001 watts.

adaptive antenna, which provides deeper antenna pattern nulls for
stronger interference sources than for weaker ones. From Fig. 4, we
also note that the use of our acceleration parameter choice in Eq.
(10) becomes increasingly important as the SNR at the input (Py/P))
increases and as P, /N increases. This is in agreement with standard
adaptive array antenna theory.!=5 From Fig. 4(b), we notice that our
adaptive algorithm converges to the final value in about ten itera-
tions when the acceleration parameter is chosen according to Eq.
(10), whereas over 100 times more iterations are needed if no acceler-
ation parameter (w = 1) is used. Thus, to accommodate all possible
ratios of signal, interference, and receiver noise, the use of Eq. (10)
for the acceleration parameter is warranted.

In other tests, we studied how the processing gain varied with the
angular separation between the signal and the interference source.
We verified that our system could achieve super-resolution beyond
the classical resolution limit as described further in Ref. 20. When
the number of interference sources M is larger than the number of
adaptive elements, we found that choosing the locations of the
adaptive elements to be randomly distributed on the N XN’ grid in
Fig. 3 improves performance very well.

One of our most important theoretical analysis and simulation
results concerns the effect of the system’s spatial Ab and temporal At
errors on SNR of the output. We considered an N = 5 element
antenna with receiver noise N. = 0.1 and one interference source at
6, =45° with P, = 1.0. In Fig. 5, we show SNR(j) as a function of the
iteration index j for different Ab and At percent errors and noise.
With no errors, a steady-state SNR of 44 dB was achieved after
about 100 iterations. Witha 2.5% spatial error and an0.5% temporal
error (Ab = £0.025, At = £0.005), we find less SNR than the ideal
system can provide, but the SNR is still a very respectable 38 dB
value after only 100 iterations. For increased spatial and temporal
errors, the system’s SNR performance is degraded even worse. The
error values included in Fig. 5 are comparable to what the present
laboratory IOP system can achieve, and, as seen, its performance is
quite acceptable. To obtain the data in Fig. 5, we employed a
random number generator with a uniform density function to pro-

Ab - 0 St 0

Ab = +0.025 St=+ 0.005

Ny (re~eiver noise)=0.1

% Pl(intorference):l.o at t= 45°

< a0 P, (signal)= 1.0 at 0;= o°

I

24

% 101

o

=

S e | .
B + + 2 v
g 0 50 100 150 200

Iteration j

Fig. 5. Output antenna pattern SNR (j) as a function of the number of
iterations j for no |IOP system errors (Ab = At = 0) and for typical experi-
mental IOP errors (Ab = 0.025, At = 0.005).

duce mask errors and detector noise with the three-sigma variance
value shown. Different sample realizations of each of these errors
were added on each iteration of the IOP. The data in Fig. 5 are the
average of five Monte Carlo runs.

We conclude this section with a detailed description of a typical
multidimensional adaptive antenna processing experiment per-
formed on the laboratory IOP. For this case, we consideran N =2
elementarray with N’ =2 time taps. The signal source was of power
P, = 0.1 and located at §, = 45° and vy, = 0.5v,,,. We used one
interference source at §, = 0° and v; = 0 with power 1.0. The
NXN’=4 array elements each with receiver noise power N, = 1.0
were lexicographically ordered as described in Eq. (27). The covar-
iance matrix computed from the received signals for this scenario was

o2

M = .

— 1121 (32)
L1 1 2

The Euclidean norm of H calculated from Eq. (32) is 7.48. We used
its reciprocal as our acceleration parameter w =0.13 as described in
Eq. (10). The complex-valued format in Eq. (8) was then used for M.

For this case, M is real and thus it is arranged as the 8 X8 matrix

M= , (33)

where M . isdescribed by Eq. (32). To obtain the optical mask used
inthe actual system, we divided each element of M by (h,,, —h .
=2 and biased the entire matrix by hy i /(hpax — hpig) =0. The
resultant optical mask actually placed at P, of Fig. 2 was thus

H = , (34)

Where H . is the same M, in Eq. (32) with each element divided by
two. The complex-valued steering vector corresponding to the signal
direction 6, = 45° and v, =0.5 has element values given by Eq. (26).
When arranged in the lexicographic format of Eq. (27), it becomes
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—0.82 — 0.61]
097 — 0.27j
s = . (35)
0.61 — 0.82j
027 + 0.97j

We easily decompose Eq. (35) into its real and imaginary parts and
obtain the eight element exogenous vector

y = [st st I = [—0.82,097,0.61,027, 061 ,

—re—i

—0.27, —0.82, 0.97]F . (36)

The two cycle complex algorithm described in Sec. 3 was
employed with the positive elements of y used on odd iterations and
the negative elements on even iterations. The x outputs were com-
puted by the laboratory IOP for the first fifty iterations. The micro-
processor support system and the dedicated high speed memory in
the 1OP were used to combine the positive and negative outputs
from successive iterations and to store the resultant bipolar numbers
w(j) computed at each iteration j. The eight relevant photodetector
outputs corresponding to the eight elements of the bipolar and com-
plex-valued output vector x = [5"1‘,6 x* ] corresponding to the com-
plex-valued weights w are shown in lg}]g. 6 after the first, fifth, and
fiftieth iterations. We denote these outputs by x(1), x(5), and x(50),
respectively, in the Fig. 6 caption. The complex-valued weights

W= Wt jWim = [Wog, Wig, Woy, Wiy 1" (37)
were directly obtained from the eight x outputs(x,, ..., xg) accord-
ing to
Woo = % tJxs
Wip = xp %
Wor = x3 %
Wi = x4 Tixg (38)
After the fiftieth iteration, we obtained
—0.9 — 0.45j

0.75 — 0.25j (39
w(50) = .

04 — 0.8 ]

02 + 1.1

To determine the accuracy of these results, we first calculated the
rms errors between the exact weights and those computed after 50
iterations. This error was found to be 2.3% (it did not decrease
appreciably when further iterations were performed). The true mea-
sure of the performance accuracy of the weights computed from the
laboratory 10P lies in the SNR obtained in the output pattern that
results when the weightsin Eq. (39) are applied with the interference
sources and receiver noise indicated. The resultant antenna pattern
was obtained. Its SNR was 14.7 dB. This is nearly exactly equal to
the SNR obtained (14.96 dB) if the exact weights were applied. We
thus find the laboratory 10P system to be extremely accurate with
less than 0.26 dB difference in the SNR of the output antenna for the

820 / OPTICAL ENGINEERING / September/October 1982 / Vol. 21 No. 6

1) 25 x(50)

Fig. 6. Experimental outputs from the relevant eight photodetectors of
the IOP of Fig. 2 in the computation of the complex-valued weights for a
multidimensional antenna with space and time adaptivity.

cases of the optically computed weights and the exact weights. Initial
simulations were performed to verify that these results were typical
of those to be expected. The above results were found to be typical
for the ten different cases we considered. We also produced initial
theoretical expressions?! from which upper bounds on the perfor-
mance of the IOP can be predicted as a function of spatial and
temporal system errors. In all cases, the results obtained in our
experiments were well below the weak bounds we derived. Because
of this, no derivation of these bounds is included at present.

7. CONCLUSION

We have reviewed the basic signal processing requirements for adap-
tive antennas and have provided a summary description of an itera-
tive optical matrix-vector processor that appears most attractive for
such advanced signal processing applications. Modifications to our
initial IOP were described to allow incorporation of an acceleration
parameter, and two techniques were described to allow the systemto -
operate on complex-valued data (as required for the APAR applica-
tion). Theoretical and experimental data and simulations showed
that use of an acceleration parameter equal to the reciprocal of the
Euclidean norm of the covariance matrix greatly reduced the number
of iterations needed (by a factor of 100 or more), especially as the
interference power approaches the signal power and the receiver
noise. We described and experimentally demonstrated two different
techniques by which the system can operate on complex-valued
data. The technique (Sec. 4) in which each complex number is
represented by its three positive projections on three axes in the
complex plane requires more space bandwidth product with fewer
iterations. The bipolar technique (Secs. 3 and 6) in which the posi-
tive- and negative-valued input data are used on successive iterations
requires twice the number of iterations but less space bandwidth
product than the technique used in Sec. 4. The choice between these
two methods of handling complex-valued data depends upon the
number of adaptive weights, the speed required, the space band-
width product available on the IOP used, and the importance of
canceling fixed-pattern detector noise.

We have also extended the use of the system to include multi-
dimensional adaptivity and have experimentally demonstrated
angular adaptivity and multidimensional space and time adaptivity
on our laboratory IOP. The experimental performance obtained
was quite excellent. Theoretical and simulation studies have shown
that the performance of the present IOP with its 0.8% spatial errors
and 0.4% temporal errors is quite adequate for APAR applications.
Our experiments showed an rms error of only 2.3% in the computed
weights, and, more important, that this resulted in less than an 0.26
dB difference in the SNR of the output antenna pattern. This novel
and most general purpose optical processing architecture merits
more research and analysis for the indicated APAR problemand for
many other diverse applications that can be reduced to matrix-
vector equations and matrix-inversion problems.
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