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Microprocessor-based fiber-optic iterative

optical processor

Mark Cariotto and David Casasent

The design and fabrication of an iterative optical vector-matrix processor are described. Microprocessor
feedback is used to produce an iterative processor capable of solving simultaneous linear equations. It also
facilitates scaling and biasing of the data and the handling of bipolar and complex-valued data as well as cor-
rection for selected system error sources. Fiber-optic interconnections are used to improve the system’s
alignment and to reduce its size, weight, and errors. The design, fabrication, and performance of the system

are analyzed.

l. Introduction

Optical vector-matrix multipliers-® represent a
general class of optical processors since many data
processing problems can be formulated as vector-matrix
equations or as a set of simultaneous linear algebraic
equations. One of the most attractive ways to realize
an optical vector-matrix multiplier with present-day
hardware is to image a linear array of LEDs through a
2-D mask and onto a linear photodetector array.> Both
serial systems?® using one LED (whose output is
time-sequentially modulated) and parallel systems®”
(with a linear array of input LEDs) have been described
to achieve an optical vector-matrix multiplication. In
both cases, the LED outputs describe the elements of
a vector, the transmittances of the 2-D mask describe
the elements of a matrix, and the system’s output is a
vector—matrix product. With a 2-D output CCD shift
register detector, one can perform convolutions on such
a system.® When the transmittances of the mask ele-
ments correspond to the Fourier kernels, the outputs
on the linear photodetector array are the discrete Fou-
rier transform of the sampled input data present on the
linear LED input array.®

In Ref. 8 we described an iterative optical processor
(IOP) in which the linear photodetector outputs from
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a vector—matrix multiplier were combined with an ex-
ternal vector, and the result fed back to the linear LED
inputs. The use of this system in adaptive phased array
radar processing,? eigenvalue and eigenvector compu-
tation,'®1! and for optimal control applications'2 has
been described. In the course of these application
studies increasingly complex operations and control
were required in the electronic feedback loop, and more
attention to the system’s accuracy was necessitated. In
this paper, we describe the microprocessor-based
fiber-optic IOP system we designed and fabricated to
address future applications. In Sec. II we describe the
new iterative algorithm we use with emphasis on the
algorithm’s convergence. Scaling, biasing, and how
bipolar and complex-valued data are handled on the
system are described in Sec. III. Following a descrip-
tion of the microprocessor-based fiber-optic IOP system
we designed and fabricated (Sec. IV), an error analysis
and quantification of the laboratory system’s perfor-
mance are advanced in Sec. V.

Il. Convergence of the Iterative Algorithm

In Fig. 1 we show a simplified schematic diagram of
the IOP. Bipolar-valued matrices are denoted by H
and bipolar-valued vectors by y and x. These are dis-
tinguished from the vector and matrix quantities (a,c,B)
in the physical optical system. This is necessary, since
the latter must be real and positive. Complex-valued
quantities will be denoted by a tilde above the variable.
Considering the physical system first, we denote the
light distribution leaving the linear input LED array at
P at iteration j by the vector a 7(j) with elements a, (j).
The light distribution leaving P; is imaged vertically
and expanded horizontally to uniformly illuminate the
rows of the mask at Py with light from the corresponding
input LED. We denote the transmittance of the mask
at Ps by the matrix BT with elements b,,,. The light
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Schematic diagram of the IOP emphasizing the iterative
algorithm.

Fig. 1.

distribution leaving each column of P53 is summed on the
corresponding photodetector and the linear output
detector array at P3. The system’s output is thus the
vector-matrix product ¢7(j) = a7(j)B7T. For nota-
tional simplicity, we will suppress the use of transposed
vectors and matrices and thus describe the vector—
matrix product by

c(j) = Ba()), (1
with elements

M
tn = ¥ Gmbma, (2)

m=1
where ¢ has N elements, a has M elements, and B is an
M X N matrix.

If the light distribution leaving the LEDs at P at it-
eration J is x(j), and the mask transmittance is de-
scribed by H, the output from the photodetectors at P
isHx(j). We form the difference between this output
and a fixed external vector y, multiply the difference by
an acceleration parameter w, and add the result to the
original input vector x(j) to form a new x(j + 1) input
for iteration j + 1. The system thus realizes the Rich-
ardson algorithm!3

x(j + 1 =x() + o[y — Hx()]. (3
When x(j) = x(§ + 1) = x, Eq. (3) reduces to
Hx =y, (4)

and the system’s output
x=H"ly (5)

is the desired solution to the vector-matrix equation in
Eq. (4).

To insure convergence of Eq. (3) for all initializations
x(0) of the system, the N roots s, {w) of the character-
istic equation:

determinant|sX — (I — wH)| (6)

of the discrete time system must lie strictly within the
unit circle in the z-plane.}4 If \; are the eigenvalues of
H, we must satisfy

0<|l—w\| <1 (7

to insure convergence of Eq. (3). An obvious choice for

wis
w= —1/)\maxy (8)

where A\max 18 the absolute value of the largest eigen-
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value of H. With w chosen as in Eq. (8), Eq. (7) is sat-
isfied for the largest A; and thus is easily satisfied for
smaller A; values. In practice, we can increase w slightly
from the value in Eq. (8) to insure that |1 — wA;| > 0.
In special cases, when highly oscillatory poles of H
occur, we can select w to be a multiple of 1/A 2. (We
have yet to consider cases when this situation arises.)

Let us now consider how to compute the choice of w
noted in Eq. (7). We generally use the conservative
upper-bound?®

Aewas < | [H[| = [z Zh;an]” ©)

for Amax. However, it is also possible to use the IOP
itself to estimate Apnax as we now describe.

In this case, we lety = 0, place H at Pg, and describe
the initial input vector x(0) at iteration j = 0 by

x(0) = a1¢1 + oo + . . . + amdu, (10)

where the ¢, are the eigenvectors of H. We feed the
output at each iteration directly back to the input and
thus after j iterations find

x(j) = H/x(0). (11)

We can write H in terms of its eigenvalues A,, and its
eigenvectors ¢,, by singular value decomposition as

H=3 ¢nhndn (12)

Multiplying both sides of Eq. (10) by ¢ and using the
orthonormality of eigenvectors, we find a,, = ¢Lx(0).
Using this in Eq. (11), we find that x(j) can be rewritten
as

X()) = T ¢m M. (13)

After a sufficiently large number j of iterations, the ei-
genvector ¢4 with the largest eigenvalue Ayax will
dominate the summation in Eq. (13), and the system’s
output will be

X(7) = ¢a Mpax@d. (14)
From the ratios x,,(j + 1)/x,(j) for j large, we find

Amax-

It is also possible to extend this conventional power
method!® to allow computation of all the eigenvalues
and eigenvectors of H on the IOP as noted in Refs. 10
and 11. In practice, we normally use Eq. (9) to estimate
Amax- Since the calculation of the Euclidean norm of
H in Eq. (9) is easily achieved in the microprocessor
system, and since the calculation need only be done once
and the same acceleration parameter w used for all it-
erations, the technique in Eq. (9) is used in preference
to the one in Eq. (14). When w is properly chosen, the
system’s iterative algorithm monotonically converges,
and the stability of the algorithm and the IOP system
are assured. This solution in Eqs. (8) and (9) has
worked well for all vector-matrix and matrix-matrix
problems to which we have applied the IOP. Even
when the matrix is ill-conditioned, use of this acceler-
ation parameter insures convergence of the algorithm,
although many iterations may be required.



. Bipolar and Complex-Valued Data

The LED and photodetectors outputs as well as the
transmittances of the mask in the system of Fig. 1 must
be real and positive. Since noncoherent light is used,
the IOP cannot handle bipolar or complex-value data
directly. This is a severe limitation of the system, and
thus much work has been done to allow processing of
such data on a vector-matrix system.l” When the
vector—-matrix multiplier in Ref. 6 is used to compute
the discrete Fourier transform of the spatial data
present across the LED array, complex- valued data
must be handled by the system. This is accomplished
by formatting the input vector and the fixed elements
of the matrix mask in terms of the bipolar real (Re) and
imaginary (Im) parts of the vectors and matrix as

YRe - HRe _Hlm
Viml  [Hm Hge | [Xm
This requires 2M input LEDs, a 2M X 2N mask, and a
2N element output detector. One can handle bipolar
data on the system in many ways.1” One technique that
has been used® is to bias all vector and matrix elements
so that they are positive. To obtain the bipolar vec-
tor-matrix product from the measured outputs, elec-
tronic postprocessing is needed. To perform this, ad-
ditional factors such as the product of known bias ma-
trices and the unknown input vector are necessary.
These can be obtained by adding a column to the matrix
mask at P> that contains all constant elements and by
including an additional detector element in the
output.”

In our IOP we handle complex data as in Eq. (15), but
we accommodate the bipolar data in Eq. (15) differ-
ently. We first decompose the bipolar input vector x
into its positive x* and negative x~ parts. The optical
system’s input vectors corresponding to each of these
are a; and as, respectively, with elements

el (15)

Aim = 0.5(xm, + |xm|) aom = =05, — |xn]) (16)

The elements of the optical mask B are a scaled and
biased version of the elements of the bipolar matrix H.
Specifically

bmn = (hmn _.}l)/(E —h), (17)

where h and h are the minimum and maximum ele-
ments of H., With the P, mask described by Eq. (17),
we see that the elements of B satisfy 0 < b,,, < 1 asis
necessary. We then achieve a bipolar vector-matrix
multiplier by operating the system twice, once with a;
as the input vector and once with a5 as the input vector,
with the same fixed M X N mask B present in both
cases. The microprocessor forms the difference Ba; —
Ba; between the system’s outputs in the two cycles and
scales and biases the difference according to

y=Hx=(h~h)(Ba; —Bay) +h L xn(l,..., 7. (18)

All the required operations in Eq. (18) are easily
performed in the microprocessor support system since
only additions, subtractions, and multiplications by
fixed constants are required. The two-cycle algorithm

(cq-¢5)

&4 o2

Fig. 2. Photodetector output ¢; and ¢z at two successive iterations
and their difference showing suppression of detector leakage current
and fixed-pattern noise.

in Eq. (18) by which bipolar data are handled on the
IOP has two other attractive features worth noting.
First, the size of the input LED array is only M (rather
than 2M) and the size of the output photodetector array
is N (not 2N). Likewise the matrix mask must be M X
N (rather than 2M X 2N). Thus, larger vectors and
matrices can be handled on a given system at the ex-
pense of using the two cycles of the system. Since the
potential speed of the IOP is so high, trading a factor of
2 in speed for a factor of 2 or 4 in the sizes of the vectors
and matrices that can be handled appears to be a useful
trade off for the applications with which we are con-
cerned. A second practical feature resulting from the
use of the algorithm in Eq. (18) is that all fixed pattern
detector noise is automatically cancelled. In Fig. 2 we
show the system’s outputs (¢; = Baj and ¢2 = Bas) on
two successive iterations with no input present (i.e., a;
= as = 0) and the electronically calculated difference
¢; — ¢co. The outputs are thus caused by detector noise
only. As seen in the ¢; and ¢, outputs, the detectors
have a large leakage current (= 8% of full scale) in a fixed
spatial pattern. However, after subtraction all fixed
pattern noise and leakage current effects are canceled
(as is seen in the ¢; — o difference output), and we are
left with only the temporal noise variations (Johnson
noise) of the detector. In Fig. 2, this noise is measured
to be <0.4% of full scale.

IV. System Fabrication

Let us now consider the laboratory IOP system we
fabricated with attention to the microprocessor system
and the fiber-optic interconnections and how these
features are used to overcome many potential system
error sources. A detailed analysis of the system’s error
sources and quantitative data on the system’s perfor-
mance are included in Sec. V.
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The electronic feedback system was to compute: the
running iterative sum on the right-hand side of Eq. (3),
the acceleration parameter w in Eq. (9), the LED
preprocessing in Eq. (16), the matrix scaling and biasing
in Eq. (17), and the detector postprocessing in Eq. (18).
It must also properly sync, control, and format the LED
inputs and system cycling for bipolar and complex-value
data handling. In practice, LED and photodetector
correction factors are also included in the preprocessing
and postprocessing (Sec. V). All these operations can
be hard-wired and performed at high speed in a dedi-
cated system. However, to enable the use of the IOP
to be studied for many diverse problems and applica-
tions, a flexible rather than a dedicated electronic
support system was desired. We achieved this with a
microprocessor support system. A schematic of the
IOP emphasizing the microprocessor electronic feed-
back and support system is shown in Fig. 3.

The electronic feedback system contains four sub-
systems:

(1) An LED board that performs the necessary
preprocessing in Eq. (16) for handling bipolar and
complex-valued data, provides the multiplexed pul-
sewidth-modulated current drive for the LEDs and
corrections for nonuniform LED saturation levels.

(2) A detector board with parallel resettable opera-
tional-amplifier (op—amp) integrators to allow variable
detector integration times and correction for nonuni-
form photodiode responsivity.

(3) Analog to digital (ADC) and digital to analog
(DAC) converters for input to and output from the
microprocessor controller.

(4) a microprocessor controller subsystem. This
controls the scheduling of all IOP operations and per-
forms the operations in Egs. (3), (9), (17), and (18).
The microprocessor subsystem contains a control sec-
tion with a Fairchild 9408 LSI microprogram sequencer
to execute various microprograms stored in a 26K ran-
dom access memory (RAM) program memory and a
thirty-two line instruction decoder to activate various
control points in the system. It also contains an
arithmetic data section containing a custom-designed
arithmetic unit consisting of a 16-bit 300-nsec multi-
plier, a 16-bit arithmetic logic unit (ALU), and a 16K
RAM with a special row-column address structure. In
this data section all arithmetic operations are performed
at high speed. The 16K RAM is used to store fixed data
such as LED and photodetector response correction
factors w, (h — h), etc. The system is also provided with
a capability of storing up to fifty-four different selected
iterative data outputs for future display on a scope or
for input to a microcomputer for analysis. The labo-
ratory IOP system also contains a front panel console
from which the operator can load any programs into the
26K or 16K memory depending on the IOP application
being considered. It also includes all necessary operator
controls to start, stop, and reset the microprocessor
10P.

A photograph of the full microprocessor-based I0P
is shown in Fig. 4. The front panel is shown at the top.
Below this is the microprocessor system. The optical
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Fig. 3. Schematic diagram of the IOP emphasizing the micropro-
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Fig. 4. Laboratory IOP and its entire electronic support system

(microprocessor, power supply, front panel console).

IOP system is placed behind the central dark panel, and
the system’s power supplies are on the bottom of the
rack. The present electronic support system contains
160 integrated circuits, requires 50 W of power, and has
a 300-nsec cycle time. Higher speed is possible, but the
flexibility and cost of the assembled system just de-
scribed were more compatible with our goals. More-
over, it provided us with a sufficiently powerful system
to be used on many different applications and problems,
and sufficient complexity to allow unforeseen problems
in the design and fabrication of larger systems to be
uncovered.



The laboratory IOP system uses a linear input array
of ten RCA SG-1002 LEDs at plane P, of Fig. 1 with
1-mW output at 940 nm for a 50-mA drive current. The
LEDs are mounted on 0.375-cm centers along a copper
block 3.75 cm long. They are held in place by silver
epoxy and sealed in white RTV compound. The inner
connections from P; to the mask at P are accomplished
by a specially fabricated fiber-optic system. It contains
a linear array of ten apertures at one end into which the
LEDs are placed. Each aperture contains ten glass fi-
bers, each 25 um in diameter, that branch outward to
form a line of ten fibers. The output from the fiber-
optic system is thus a 10 X 10 array of 100 fibers whose
locations match the 10 X 10 elements of the mask at Ps.
The fiber outputs have a center-to-center spacing of
0.35 mm vertical and 0.94 mm horizontal. The Py mask
is placed between these fiber-optic outputs in the de-
tector array. In the present system, the mask used is
a fixed pattern recorded on film. An advanced I0P
system we are presently designing will use a real-time
light modulator (such as the CCD-addressed liquid
crystal light valve!8) as a real-time adaptive mask ele-
ment. The detector used in the present system is a
Centronics LD-20 silicon photodiode array containing
twenty elements each measuring 4 X 0.9 mm on
0.94-mm centers. The spacings and sizes of the outputs
from the fiber-optic system were chosen to match the
size of the elements in this detector. The horizontal
spacing between fibers equals the spacing between de-
tector elements, and the height of the ten vertical fiber
outputs equals the height of a detector element. This
allowed us to sandwich the mask between the output
from the fiber-optic element and the detector with no
imaging optics necessary between Py and P3 in Fig. 1.
A photograph of the optical vector-matrix multiplier
is shown in Fig. 5. From right to left are the LED array,
fiber-optic connector, mask, and photodetector array.
The photodetector board is also visible on the left. The
components in the system have been separated for
clarity in the photograph. In practice, the entire system
is less than 5 cm long.

V. System Performance

In this section we discuss the performance of the
laboratory IOP system we fabricated and emphasize
how many system designed features were chosen to
improve the accuracy and stability of the system. The
first IOP that we fabricated® used cylindrical lenses for
imaging from Py to Py and from Py to P3.  Experiments
and simulation analysis on this system showed that two
major error sources were cross talk in the vertical
imaging from P; to Py and nonuniform illumination of
each row of the Pomask. The fiber-optic system (Sec.
IV) effectively removes both of these error sources.

Similar problems were found to occur in the required

imaging from P5 to P3. By placing the detector, mask,
and fiber-optic element in contact, these error sources
were similarly removed, and a rugged stable system (Fig.
4) of greatly reduced size and weight resulted.
Amplitude nonlinearities in the light outputs from
the LEDs is a well-known problem. These components

Fig. 5.

Laboratory optical vector—-matrix multiplier.

are thus usually operated at a fixed bias current and
amplitude-modulated over a restricted range to de-
crease nonlinear effects. This results in a decreased
useful linear dynamic range. Correction for LED
nonlinearities is possible but was not included in the
laboratory system. Rather, we use pulse width modu-
lation (PWM) of the LEDs when linear performance
and large dynamic range data are needed. When op-
erated in the PWM mode, the present laboratory system
has a minimum to maximum pulse-width ratio of 256
and thus a 256:1 input dynamic range. This has proven
adequate for all applications with which we are con-
cerned. Use of laser diodes rather than LEDs for the
input source array allows amplitude modulation with
a large linear dynamic range. However, linear laser
diode arrays are not yet commercially available, and
thus our present system is operated with an LED input
source array.

When operated in the PWM data mode, a large spa-
tial nonuniformity in the output power from the LEDs
of £26% was measured. This fixed error is corrected
for by multiplying the input signal to the mth LED by
the reciprocal of its response. Spatial nonuniformities
of £7% were measured for the responsivity of the output
photodetector elements. These output nonuniformities
were similarly corrected for by multiplying each pho-
todiode output by its appropriate reciprocal respon-
sivity correction factor. These multiplicative source
and detector corrections are directly included in the
preprocessing and postprocessing with no additional
overhead, since the correction factors can be measured
once and stored in the microprocessor system’s 16K
data memory. As noted in Sec. IT1, the bipolar data
handling algorithm in Eq. (18) automatically cancels all
fixed-pattern detector noise and detector leakage cur-
rent effects.

Residual spatial nonuniformity errors caused by the
source and detector may still remain. In addition,
differences in the coupling loss from the different LEDs
to the different fiber-optic elements may exist together
with spatial variations in the outputs from the 100
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fiber-optic elements (resulting mainly from differences
in the polishing of the ends of each fiber). After
applying the preliminary LED and photodiode correc-
tions, we measured the 2-D spatial variations of the
entire system and found a residual nonuniformity with
a standard deviation of only 0.8%. This level of accu-
racy was sufficient for our purposes. It can be reduced
further by placing a fixed correction mask (with trans-
mittances inversely proportional to the system’s 2-D
spatial nonuniformity) in contact with the data mask
at Ps. In practice, we include these fixed corrections
on the data mask itself when it is recorded.

From the discussion thus far, we find that all fixed
spatial errors in the system can be reduced to nearly any
desired level, and nearly any desired input data dynamic
range can be achieved (by pulse width modulation with
an associated loss in speed, by amplitude modulation
of a laser diode source array, or by a combination of
amplitude and PWM modulation). The major errors
in the system are thus the time-varying thermal noise
in the detector, and noise in the data recorded on the
mask at Po. In the present system, the temporal de-
tector noise is <0.4% of full scale. This can be further
reduced by use of cooled detectors, advanced detector
fabrication techniques, and chopper-stabilized opera-
tional amplifiers if necessary. Noise in the recorded
data at Py thus appears to represent the major limita-
tion in the system’s performance. A general analysis
of the effect of this error source on the performance of
the iterative algorithm is not possible. Rather, specific
case studies and applications must be individually ad-
dressed. In general, we have found that the accuracy
of the final answer in the iterative algorithm will be less
than or equal to the error in a given vector-matrix
product with final errors of 1% being quite easily
achieved. Insome cases, the Ps matrix mask can be row
or column biased to reduce its dynamic range require-
ments. Such issues are best treated for specific appli-
cations. We are in the process of completing such
analyses for adaptive phased array radar? and linear
quadratic regulator controll2 applications on the IOP.
These will be published and this issue addressed more
fully when sufficient data and funding are available.

VI. Summary and Conclusion

In this paper, we have described the design and fab-
rication of an iterative optical vector-matrix processor
and the performance possible from such a system. The
use of a microprocessor electronic support system was
shown to provide extensive flexibility in the laboratory
system assembled. The use of fiber-optic intercon-
nections was found to result in a rugged and stable
system of small size and weight and remove cross talk
and nonuniform illumination error sources. A new al-
gorithm for handling bipolar data on the system was
shown to provide cancellation of spatial fixed-pattern
system noise. Source and detector nonuniformities are
also easily corrected by RAM look-up tables. The re-
sidual spatial system error on the laboratory IOP as-
sembled was <0.8%, and its temporal noise was below
0.4%.
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This present system description has only emphasized
its use in solving linear algebraic equations or vector—
matrix equations. In Sec. I we noted that the system
can also be used to compute the eigenvalues and ei-
genvectors of a matrix. Multiplication of two M X M
matrices is also possible on the system by vectorizing
one matrix or by running the system M times with the
M columns of one matrix as inputs. Matrix inversion
is similarly possible by describing the problem as N
problems each of the form of Eq. (3) withy = 1. We
have also'? used the system to solve nonlinear matrix—
matrix problems using a modified Newton-Rhapson
algorithm. In this latter application the solution in-
volves an inner and an outer iterative loop, with the
output from the inner loop fed to the outer loop after N
iterations and a different mask necessary for each outer
loop iteration. The IOP system thus appears to be a
viable, powerful, flexible, and quite general purpose
processor with many potential applications.

The authors thank Rome Air Development Center
for initial support of this research, Air Force Office of
Scientific Research (grant 79-0091) for interim support,
and NASA Lewis Research Center (grant NAG 3-5) for
present support of our IOP research.

References

1. L. Cutrona, in Optical and Electro-Optical Information Pro-
cessing,d. Tippett et al., Eds. (MIT Press, Cambridge, 1965), pp.
97-98.

2. A. Edison and M. Noble, Optical Analog Matrix Processors, A.
D. 646060 (Nov. 1966).

3. P. Mengert et al., U.S. Patent 3,525,856 (6 Oct. 1966).

4. M. Monahan, in Digest of the International Optical Computing
Conference, IEEE Catalog 75-CH0941-5C (IEEE, New York,
1975), pp. 25-33.

5. M. Monahan, K. Bromley, and R. Bocker, Proc. IEEE 65, 121
(1977).

6. J. W. Goodman, A. R. Dias, and L. M. Woody, Opt. Lett. 2, 1
(1978).

7. J. Goodman et al., Proc. Soc. Photo-Opt. Instrum. Eng. 190, 484
(1979). N

8. D. Psaltis, D. Casasent, and M. Carlotto, Opt. Lett, 4, 348.
(1979).

9. D. Psaltis et al., Proc. Soc. Photo-Opt. Instrum. Eng. 180, 114
(1979). '

10. H. J. Caulfield, D. Dvore, J. W. Goodman, and William Rhodes,
Appl. Opt. 20, 2263 (1981).

11. B. Kumar and D. Casasent, Appl. Opt. 20, 3707 (1981).

12. D. Casasent et al., Proc. Soc. Photo-Opt. Instrum. Eng. 295
(1981).

13. L. F. Richardson, Philos. Trans. R. Soc. London, Ser. A 210,
307-357 (1910).

14. E. Jury, Theory and Applications of the z-Transform Method
(Kreiger, New York, 1973).

15. E. Kreyszig, Advanced Engineering Mathematics (Wiley, New
York, 1972).

16. G. Stewart, Introduction to Matrix Computations (Academic,
New York, 1973).

17. J. Goodman et al., “Incoherent Optical Matrix-Vector Multi-
plier,” Stanford U. Tech. Rept. L-723-1 (Feb. 1979).

18. J. Grinberg et al., Proc. Soc. Photo-Opt. Instrum. Eng. 128, 253
(1977).



