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ABSTRACT

An iterative optical processor (IOP) that can solve iteratively systems of simultaneous
linear algebraic equations is described. Modifications to the system enable it to solve the
algebraic Riccati equation and the linear-quadratic-regulator (LQR) problem of optimal con-
trol. We describe the resulting electro-optical processor and illustrate how we implement
the Richardson and modified Kleinman algorithms to solve the LQR problem.

1. INTRODUCTION

Applications of optimal control will continue to grow in complexity as advanced sensors
[1-2] with improved accuracy emerge and as redundant sensors are incorporated to improve the
reliability of the system being controlled. We describe (in Section 2) an iterative optical
processor (TOP)[3] that can be used for such advanced optimal control applications. The spe-
cific case study chosen (in Section 3) was the calculation of the optimal control signals
for the F100 turbofan jet engine [4-6]. In Section 4, we describe how the IOP can be used

to solve the algebraic Riccati equation (ARE) of the linear quadratic regulator (LQR) problem.

[7-8] of modern control engineering. We do so by implementing the Richardson [9] and a mod-

ified Kleinman [{10] algorithms. Preliminary experimental results are thengiven in Section 5.

2.  ITERATIVE OPTICAL PROCESSOR

A schematic diagram of the IOP is shown in Figure 1. The system's input at plane Py is a
linear array of light emitting diodes (LEDs) or laser diodes. We denote their outputs at
.iteration j by the row vector xT(j), with elements Xy, where the superscript T denotes

transpose. The light leaving Pj is 1maged vertically and expanded horizontally to illumi-

nate a mask at P, whose transmittance is described by a matrix HT with elements hpmp. The
light leaving Py is imaged horizentally and collected vertically on an output linear photo-
detector array at P3. We denote the P3 output at iteratlon j by the row vector cT(J) with
elements cp. The system cutput is thus

cT(3) = xT(J)ET , IR ¢ ¥
and its elements are given by

M
Cp = p&1 *mbmn- (2)

For notational simplicity, we will not specifically denote the transposed vectors. and matri-
ces in the system and we will thus describe the system output at P3 by

c(d)y = BEx(3) , (3a)
whose elements are given by
M
¢y = pZ1 Xmbmn-. (3b)

From (3), we see that this optical system realizes a vector-matrix productas first described
in [11].

In (3], we modified this system to include addition of an exogenous vector to the P3 out-:

put and feedback of the sum to the input as the new x(j + 1) iterate. In Figure 1, we modify
the system further by: forming the difference betweeén the Hx(j) output in (3) and a fixed
exogenous vector y, multlplylng this difference by an acceleration parameter w, and adding
the result to the previous input vector x(j) to yield the next x(j + 1) iterate. The new
system of Figure 1 thus realizes the Richardson algorithm [9]

x(3 +1) =2 +oly - Ex(I) ] (4)

In the control applications to be addressed (in Section 3), the elements of all vectors
and matrices are bipolar. Since the light output leaving Pj, the transmittance of the mask
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FIGURE 1. Schematic diagram of the iterative optical processor (IOP)

FIGURE 2. Schematic.diagram of the bipolar vector-matrix multiplier
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FIGURE 3. Photograph of the laboraﬁory.iﬁerative optical processor (IOP)
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at Py, and the photodetector's outputs at P3 must be real and positive, wemodifiedthe system
to allow it to operate on bipolar data. We denote the bipolar algebraic variables describ-

ing the input, mask and added exogenous vector by X, H and y as in (4). We denote vectors
by underlined lower-case letters, matrices by underlined capltal letters and scalars by a
single lower-case letter (usually Greek). The variables in the optical system are denoted

by a, B and ¢. For the Py mask, we scale and bias the matrix H such that the elements of
the matrix B used at Py in the system are

Pun = (hgn - h)/A - by, (5)

where h and h are the values of the maximum and minimum elements of H. From (5), we find .
that 0 < byy < 1 and thus that the transmittances of the optical mask lie between 0 and 1 as
required. To handle bipolar data, we decompose each element of the bipolar input vector x

into its positive x* and negative X~ components. For the optical inputs, we have

ajm = 0.5(xg + |xp)) )
aom = 0.5(xm =~ |xp|)
form=1,...,M. In this form, aj = x* and a, = x~ are both real and positive. To obtain

the desired bipolar output vector, the system”is Operated twice with inputs a; and as. The
two outputs Baj and Bajp are subtracted, scaled and biased (by the electronic feedback sys-
tem) to yield d

. | .
y=Hx= (R -h)[Ba; -~ Bas] +h_Z xu(l....017T. (7)

A schematic diagram of the bipolar vector-matrix processor is shown in detail in Figure 2.
For simplicity, we will not include the associated scaling, biasing and post-processing de-
tails associated with the operation on bipolar data in future system descriptions. For the
acceleration parameter w, we choose w = -1/\pax, wWhere Apax is the absolute value of the .
largest eigen~-value of H. In practice, we estimate Apzx from the Euclidean norm of the ma-
trix H as in [12].

We have fabricated a laboratory prototype of the IOP using 10 LED inputs, a 10 x 10 film
mask and a parallel readout linear detector array. A microprocessor, arithmetic logic unit,
multiplier and memory in the feedback network provide the necessary control and post-proces-
sing. Correction for spatial non-~uniformities in the LED inputs and responsivities of the
output photodetector elements are made by ROMs in the electronic feedback system. A nesidual
system spatial uniformity of 0.8% was measured. The interconnection between P and P2 was
achieved by a specially fabricated fiber-optic system. The vertical size of the mask was
4 mm. It was chosen to match the height of the detector elements so that planes P; and P
could be placed in direct contact. These fiber-optic interconnections assured uniform iliu—
mination of each row of P3 and eliminated cross-talk between rows. This also resulted in a
rugged system of small size and weight. A photograph of the resultant processor is shown in
Figure 3. The total length of the system is less than 5 cm.

3. Fl00 TURBOFAN JET ENGINE. CASE STUDY

The specific LQR problem we consider is the calculation of the optimal control signals
u(t) for the F100 turbofan jet engine. With the help of NASA-Lewis Research Center, we ob-
tained state F and control distribution G matrices which model the engine and state Q and

control R weighting matrices for the LQR control system deSLgns. We thus compiled the reg-

uisite data [F, G, 2, R] for LOR control system designs of various orders (N = 18, 5 and 3)
for each of the Six regimes in the flight envelope.

The LQOR problem (7] of modern control engineering is to find the control signals u(t)
that minimize the quadratic cost performance index .

Jlu(t)] = 0.5, [xT(£)Qx(t) + uT(t)Ru(t)] dt (8)
]
for the linearized system model
dx ..
T = Ex(t) + Gutt), (9)

where x(t) is an N x 1 state vector and u(t) is an M x 1 control vector. In (8), Q is an
N x N weighting matrix and Ris an M x M “weighting matrix which measure the cost of state
errors and appiied control, respectively. 1In (9), F is the N x N state matrix and G is the
N x M control distribution matrix which model the open-loop dynamic response of the FlOO
engine.

%M-



The solution to the LQR problem is the M x N LQR feedback gain matrix K. It is multi-
v plied by the states x(t) to produce the control signals u(t) according to “the linear-state-
variable feedback (LSVF) control law.

u(t) = -Kx(t). (10)
The LQR feedback gain matrix K is defined by
K = R71GTs, (11)

where the symmetric N %X N matrix S is the positive definite solution of the matrix algebraic
Riccati equation (ARE)

SE + FTs ~ sIGR™I6TIs + g = 0. (12)

The closed-loop poles that characterize the transient response of the controlled system are
the roots of the closed-loop characteristic equation

Determinant(sI - (F - GK)] = 0. (13)
In this classical optimal control problem, the LQR matrices F, G, @ and R are specified
by the control engineer and x(t) is the sensed state-vector. To compute K and hence u(t)
requires three steps:

(1) Solve (12) for the optimal return matrix S.

(i1) Use S and (11) to compute the LQR: feedback gain
matrix K.

(iii) Use (10) to determine the control signals u(t).
In Section 4, we demonstrate how to achieve these operations on the IOP of Figure 1.

4. ARE AND LQOR SOLUTIONS

To solve the matrix ARE on the vector-matrix IOP of Figure 1l requires modification of (12)
into a problem involving the solution of a system of linear algebraic equations. We achieve
this step by examining the Kleinmam algorithm [10]. This algorithm determines S in (12} by
finding successively the unique positive definite solutions S(K) of the linear matrix equa-
tion

SUWFX) + FT(k)s(Xx) + Sk - ) {G R"lGT}S(k -1y +Q= ’ (14)
yhere k =1,2,... is the iteration number and
F(k) A F - [gRIcTIS(k - 1), (15)

In 1968, Kleinman showed that as k —> =, the iterate S(k) approaches the positive definite
solution § of the ARE. To solve (14) on the vector-matrix IOP, we first vectorize (14). We
achieved this by converting each matrix in (14) into a vector according to the lexographic

ordering of the elements of the matrix. For example, we described the vectorized version of

the M x N matrix H by the column vector

T
C[H] = [hijHyp...hiyhpihog...hon.....hM1hyo .. -hyy]
with M * N elements.

In our notation, we write the vectorized version of the Kleinman algorithm of (14) in
terms of the column vectors C[-] as

FIF(k)ICIS(X)] = -c(s(k ~ LI{egrR1eTIs(kx - 1)1 - clQl, (16)
for x = 1,2,.... In (16), F[F(k]] is a special two-dimensional formatted N2 x N2 mask of
F(k) in (15). The term'F[F(k)]C[s(k)] on the left-~hand side of (16) is the vectorization of
the linear term [S(k)F(k).* FT(K)S(k)] in (14). The first-term on the right-hand side of
(16) is the vectorization of the (k = I)-th iterate of the quadratic term
[S(k = 1) [GR™ lGT]S(k - 1)] in (14) and C[Q] is the vectorization of the state weighting
matrix Q.

For N = 3, the vectorization of the linear term in (l4) is the vector-matrix product
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where C[S(k)] is the column vectorization of the optimal return matrix S at the k-th itera-~-
tion of the Kleinman algorithm and the matrix I in F[F(k)] is the N x N Tidentity matrix.
The N2 x N2 matrix mask F[F(k)], which is computed according to (15), displays a block
structure. There are N2 matrix blocks in F[F(k)]; each block is an N x N matrix. The & -
transpose FT (k) of F(k) is replicated along the main diagonal blocks of F[F(k)]. Further-
more, the Iexographic ordering of the elements of FT(k) appears along the main diagonals of
the matrix blocks. The remaining [N(N - 1)]12 of the N4 elements of F[F(k)] are zero. Thus
computing and formatting the elements of F[F(k)] are straightforward’

Through our systematic vectorization of (l4)-we'have converted the Kleinman algorithm in-
to repeated problems involving the solutions of systems of N2 linear algebraic equations in
the form of (16). We rewrite our modified iterative Kleinman algorithm in the form

H(X)x(k) = y(k), ' _ (18)
where: .
H(k) = F[F(k)] (19)
x(k) = C[S(k)] (20)
k) = ~C[s(x - 1{eR~1eTIs(x - 1)] = c[Q] - (21)

and k = 1,2,:... is the iteration index. We can now solve the vector-matrix equation (18)
and hence ‘the matrix ARE (12) for S on the IOP of Figure 1.

To solve (16) and (18), we initialize S(O) and set the iterative index k for the Klein-
man algorithm equal to L. At each iteratIon k of (16), we calculate F(k) in (15), flormat
H(k) = F[F(k)] as in (17) and (19) and.compute y (k) as in (21). Ve then enter an inner
Richardson iterative loop (with iteration index j) in which we use the previous iteration
S(k - 1) to solve (18) for the next iterate S(k) of S. We thus see that the solution of
T16) for S involves two iterative loops:

(i) An inner loop (index j) in which the Richardson algorithm
of (4) is used to solve (18) for §(k) from S(k - 1), and

(ii} An outer loop (index k) in which our modified Kleinman
algorithm in (16) is used to update F(k) andzgjk) and
format F[F(k)] for the next inner loop as in (15),.(19),and (21).

To solve the matrix ARE, therefore, a new mask H(k) F(F(k)] in (17) must be calculated at
each outer (Kleinman algorithm). loop iteration. Xk and placed at Py in the IOP of Figure 1.
We thus require a real-time, adaptive and reuseable mask at P,. Real-time spatial light
modulators such as the CCD-addressed liquid crystal light valve [13] can provide such a
real-time P, mask.

5. EXPERIMENTAL DEMONSTRATIONS

To illustrate the IOP, we solve a system of ten linear algebraic eguations in which the
exogenous vector is y = [1 1 1 1 111 111] and the matrix H is the lower-triangular
10 x 10 matrlx
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FIGURE 4. Reverse-contrast photograph of the B mask corresponding to (22)
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FIGURE 5. Real-time IOP outputs x(j) at selected iterations j
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0 1 1 1 6 0 0 0 0 O

0o o 1 1 1 0 O 0 0 O
H=lo0 0 0 1 1 1 0 0 0 0 (22)

0 0 0 01 1 1 0o O O

o 0 0 0 0o 1 1 1 o0 O

0 0 0 06 0 01 1 1 0

L0 0 0 0 0 0 0 1 1 14 .
Since the largest element H = 1 and the smallest element h = 0, the difference (h - h) = L.

Consequently, the scaled and biased matrix B in (5) is identical to H. The reverse-contrast
photograph of the actual mask which was drawn on graphic-arts masking film and photoreduced
onto 35 mm film is shown in Figure 4. Since the ten eigenvalues of H are all equal to one,
the Richardson algorithm (4} will converge for all values of the acceleration parameter w
satisfying 0 < |1 - w| < L. To observe the gradual convergence of the IOP, we selected the
value w = 0.25 for the experiment. The experimental results at iterations j = 0, 5, 10 and
20 and the steady-~state solution are shown in Figures 5a - 5e. Variations across the out-
puts are caused by the LED array, fiber-optic element and detector non-uniformities which
were not electronically corrected in this initial experiment. Reducing the vector y by a
factor of four to reduce the accuracy of the microprocessor to that of the optical system
(= 6 bits) improves the appearance of the. steady-state solution as shown in Figure 5f.

6. SUMMARY AND CONCLUSIONS _-

We have introduced, described and fabricated a general-purpose optical processor that is
capable of solving systems of linear algebraic equations. This. iterative optical processor
(I0P) is capable of operating on large input vectors and matrices (500 element input and de-
tector arrays and a 500 x 500 element dynamic mask are feasible) in parallel at very high
cycle times (a vector-matrix multiplication every 1l nsec is within the realm of possibility).
Many data processing problems can be formulated as vector-matrix equations. In this paper,
we have chosen the solution of the algebraic Riccati equation and the linear quadratic regu-
lator problem of modern control engineering. We have modified the conventional algorithms
and shown how the IOP can be used for these applications. This process has extended the
repertoire of IOP operations to include the solution of nonlinear matrix equations. The ap-
plication of the IOP technique to the LQR control of the F100 turbofan jet engine has been
presented, associated new algorithms have been developed, -and initial experimental demon-
strations of the system have been included. Our present research on this system is directed
toward finalizing the details of implementation of the Kleinman and Richardson algorithms on
the IOP and analyzing the error sources in the system.
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