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Abstract

Methods for improving the accuracy of optical processors are considered. The improvement in accuracy is
achieved by increasing the space-bandwidth product requirement of the system. Since convolution is the oper-
ation most easily and efficiently implemented by optical systems, we concentrate on systems that achieve con-
volution with increased accuracy.

I. Introduction

One of the major shortcoming of optical data processors (ODP) is the relatively low accuracy with which
they perform computations. The accuracy is limited primarily by the linear dynamic range of the devices used
(light modulators, detectors, etc.) and optical and electrouic noilse that 1s present in the system, since
ODPs are normally operated as analog systems. Improved device performance will lead to a corresponding im-
provement in accuracy, however it is unlikely that a dramatic change will come from this direction, in the
foreseeable future. Current systems have a linear dynamic range of 30-40 dB which translates to 9-11 bits of
accuracy, and the above numbers are rather optimistic. In order to construct optical systems that have 16 bits
or 32 bits of accuracy, it is necessary to change our design philosophy. In a conventional ODP an optical
wave 1n any point in space and/or time attains one of N distinguishable values. (N is a maximum set by the
noise level and the linear dynamic range of the optical modulator or detector). Alternatively L separate
points in space (or time), each attaining one of n; distinguishable levels, can simultaneously represent the
same variable encoded in a single point before provided that

- I
N 3 nj, (1)

where II represents the product. Since all the n; are positive integers n. € N. Hence, instead of encoding
each data point in a single location with a large dynamic range, we choose to represent it in L different lo-
cations each with a greatly reduced dynamic range requirement, which in turn results in increased overall ac-
curacy. The L locations correspond either to different spatial resolution points or different times. Optical
systems normally have high space-bandwidth product and speed. It 1s expected that trading either one for im~
proved accuracy will be advantageous. .
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Figure 1 Optical processors operating on coded data.

In figure 1 the input data is denoted by f(i) where the index i is used to represent dijferent data points.

We desire to perform an arbitrary operation# on f(i) and produce an output function g(i). An encoder assigus
a set of values f(i,j) to each input data point £(1), where the index j 1is used to represent the different en—
coded values. The optical system operates on the encoded function £(i1,1). The output of the system must in
general be decoded to produce g(i). The critical step of course is the particular coding scheme used to ob-
tain £f(i,j). There are two criteria that we consider to evaluate a coding scheme: (a) We must be able to
perform the encoding and decoding steps quickly and efficiently so that the high throughput rate of the opti-
cal system is maintained. <(b) The coding used must be compatible with the optical system, which must be able
to operate on the encoded data, £(i,j). In this paper we consider two separate coding schemes. 1In section
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II we review residue arithmetic and we point out some of 1ts advantages and disadvantages. In section IIT we
present binary encoding and in section IV we apply this concept to the implementation of accurate optical
correlators/convolvers.

II. Residue arithmetic

Residue arithmetic has received considerable attention recently [l, 2] as the basis for a coding scheme.
The coding can be described by,

£(1,3) =[£G (2)
]
where n represents the residue (remainder of the division of the number in brackets by n). The n; are
called moduli and they are relatively prime numbers. The maximum number f(i) that can be represente% by this
scheme is given by equation (1). The attractive attribute of residue arithmetic 1is that additions, subtrac-
tions and multiplications can be performed independently for each j with no carries required [1]. Thus if 33
consisted of these operations only, then the following two operations are equivalent.

s(h) =F te()] (3a)
8(1,3) =F [F4, 91, (3b)

where
2l <F =®I, | @

andJ~ operates on 1 only. Addition and multiplication in the residue system differ from the corresponding al-
gebraic operations in that the residue of the algebraic result must be obtained. As a result the same optical
system capable of implementing (3a) cannot be used to implement (3b). A number of optical systems have been
proposed [l, 2, 3] that allow implementation of the elementary operations (+, -, x). However efficient inte-
gration of these building blocks into a system than performs more complicated signal processing operations
(e.g. Fouriler transform, filtering) has not been achieved. A system proposed by Huang, et al. (figure 12,
reference 1) is the most promising attempt to date, since it does utilize the parallelism of optics to some
extent. A second limitation of residue arithmetic is the difficulty in performing the coding and particularly
the decoding steps. The method proposed by Psaltls and Casasent [2] utilizes optical convolution to achieve
both operations. A time-integrating acousto-optic convolver {5] in the encoding section, and a space-inte-
grating [5] version in the decoding section can convert 20-bit numbers in less than 1 msec from decimal to
residue and visa-versa. Extensions of such systems can realize addition and multiplication in residue.

ITI. Bdinary arithmetic

We now turn our attention to a different encoding scheme that results from setting ny = 2 for all j in (1).
This of course is the familiar_binary number system. The maximum dynamic range obtainable in this case is
N = 2L, The encoded function £(i,j) is related to f(i) by

L i
£(1) = I £(1,327, (5)

where £(i,j) is O or 1. The obvious advantage of this coding scheme is that the minimum possible dynamic
range 1s used (n; = 2), In addition the encoding and decoding steps can be easily realized or they may even
be unnecessary, if the optical system is interfaced with a digital machine. What must be determined is
whether optical systems can operate efficiently on data that has been encoded as described in (5) and the
advantages and disadvantages of such systems. This paper advances initial remarks on these issues.

The simplest way to add two data points (numbers), f(1l) and £(2) with an optical system is by the use of
the spatial integrating properly of a lens. This can be achieved 1if the two points spatially modulate the
optical beam. If temporal modulation is used, the time integrating property of detectors cam be utilized to
implement the desired summation. Optical systems of course can add many numbers simultaneously. Algebraic
addition is thus very easy to realize optically, whereas the same 1s not true for binary addition. For this
reason we use algebraic addition to obtain the binary sum.

To describe how this is done, we write the addition of 2 data points as:

L —
B+ e = DO, ¢ £(2,1)123. (6)
j=
From (6) we conclude that to perform the addition of f£(l) and £(2) we can simply add (algebraically) the cor-
responding bits in the binary representation. This can be easily done with an optical system. Subtraction
1s similar to addition.

The multiplication of two numbers £(1) and £(2) is given by
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where the substitution £ + k = j or & = j~k has been used to obtain the last part of equation (7). The term

in brackets in equation (7) can be recognized as the discrete convolution of £(1,j) and T(2,j). From (7) we
see that to multiply two binary numbers we can convolve the bits representing the two numbers. The con-

cept of performing binary multiplication using analog convolution was proposed by Whitehouse and Speiser [4],
for the implementation of fast multipliers using charge-coupled-device convolvers. Hence both addition/sub-
traction and multiplication can be easily performed by optical computers when the coding is binary. The com~
patibility of binary coding and optical processing offers many advantages over residue coding. The relative
disadvantage of this scheme is that the outputs are not in binary form. The sum of M numbers in binary will
produce L output data points each requiring a dynamic range M. Similarly the product of two such numbers will
produce 2L output points, the maximum dynamic range being L. The output dynamic range requirement is thus
greater than the Input one and it increases as more operations are performed oun the input data. However there
is a dramatic drop in the dynamic range requirement of this system when compared to a system where coding is
not employed. To appreciate the advantage of such a system we consider a specific example. To multigly two
numbers, each with a dynamic range N = 2L = 216 = 65,000 we need an output dynamic range N& =

4.2 x 107. With the binary encoding the input and output dynamic ranges are 2 and 16 correspondingly.

Since the output of the binary-coded system is not in common binary form, we must address the decoding
step. There are two reasons for this. First we normally wish to have our results in a conventional number
system such as decimal or binary. Second, since the dynamic range of the computed numbers increases as more
and more computations are performed, it may be desirable to convert them at selected stages of the processing
to the binary representation before performing additional operations on these numbers. The output, g(j), of
any operand in the binary-coded system has an equivalent value of the form

L'_ 3 '
= § g(3)2 (8)

where the numbers g(j) can have a dynamic range greater than two. If we wish to convert these numbers to an

analog form, we simply implement (8) by electronic circuits. This circuit is similar to a digital-to-analog

convertor. The conversion of the g(j)'s in (8) to the true binary representation of g, is more complex. One
way o achieve this is to A/D convert each g(j) and multiply the binary representation of F(j) by 23 which is

equivalent to upshifting by j bits. We can then use a digital adder to perform the summation in (8). Alter~
natively we can use analog circuiltry to perform the decoding by the following algorithm

g(D-lg) |,
TG =BG D], . (9

where §'(j + 1) denotes the value assigned to §(j + 1) after the operation. Repeated application of (9) re-
duces all the E(j)'s to either zero or one, i.e. the binary representation,

IV. System implementation using binary arithmetic

Equations (6) and (7) provide us the basic building blocks that we can use to implement more complex pro-
cessing systems. The simplest system is a binary multiplier, which can be implemented using optical convolu-
tion. Such a multiplier can be very fast (< 100 nsec for a. full 16 bit multiplication is possible). However,
such an element would probably be too expensive and bulky to be competitive with digital multipliers. The
parallel processing capability of the optics must be utilized in order to gain a clear advantage. This can
be done by performing more complicated operatiens on large sets of data simultaneously, rather a simple multi-
plication of two numbers. Specifically we consider computing the convolution of two functions, f(x) and h(x),
very accurately with an optical processor using the binary coding scheme.

The convolution is written as
g(xX) = f £(x) h(x-x)dx. (10)
Using (5) we substitute the binary representations of f£(x) and h(;—x) to obtain

~ L _ j L . X
g(x) =S| L £,(x02 z hk(x—x)Z dx

j=0 k=0
= f %L % £, () hk(x x)dx
320 k=0 i
% E SF o B Goody 2] (a1
1=0 |k=0 = 3-k k

The_term in brackets in the last part of the above equation is recognized as the two dimensional convolution
of Ej(x) and hj(x) in x and j (a continuous convolution in x and a discrete convolution in j). Equation (11)
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is also recognized to be in the form predicted in (8). Consequently the decoding schemes that were described
earlier apply here as well.

There are several OSP architectures [5] that can perfotm 2-D convolution. The result in (11) shows that
we can utilize one of these architectures to convolve one-dimensional signals with very good accuracy. The
specific architecture we propose for this uses acousto-optic (AOQ) devices. AO devices are at a much higher
level of development than 2-D spatial light modulators and thus this particular system is preferable to other
2-D convolver architectures that require the use of 2-D devices. The proposed system is shown in figure 2.
It utilizes N AQ delay lines at Py, oune for each bit. Each A0 line is driven by the corresponding fj(c).

Figure 2 Two dimensional convolver using acousto-optic devices.
Thus the index_J corresponds to the y-direction in figure 2. The light transmittance of P; 1is given by
fvzj(t—x/v) = f(t-x/v,y) (where v is the velocity of sound). This function is Fourier transformed in y:and imaged
in x by the lens combination Lj. The light entering plane P, is thus described by

F(t-%u,) = £ E(e=Ey)e Iy ay. (12)

vy v

A two dimensional transparency 1s placed at Py whose complex transmittance is given by:

H(x,wy) =/ H(x,y=i)e ¥y ay. . a3
The light amplitude Iimmediately following plane P2 is simply the product of F and H. The lens L) takes the

2-D Fourier transform of this product and displays it at the output plane P5. A one dimensional detector

array in y is placed at x = 0, at plane Pj. The light detected is a function of time and space y (different
detector elements). This P, pattern is described by:

~ 1 -
B(t,y=1) =75 [S F(t-Z,wy) H(x,wye jw?>’yc1xdwy

Ir ?(t—é y=y) E(x,y)dxdy ;=j (14)

where ; is the vertical spatial variable at the output. Equation (14) is the desired 2-D convolution (equa-
tion (11)). The outputs from the different detector elements can be weighted appropriately and added by
analog electronics to provide an overall dynamic range much higher than conventional OSPs.

V. Experiment

We performed a simple experiment to demonstrate the advantages and feasibility of binary coding. A conven-
tional Van der Lugt convolver/correlator [6] was used. Specifically, we computed the autocorrelation of the
function f(x)_shown in Fig. 3. The binary representation of f(x) is shown in Fig. 4. A 2-D transparency of
the function f(x,y) in Fig. 4 was prepared and an off-axis Fourier transform hologram of it was constructed.
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Figure 3 Input function, £(x) used in the Figure 4 Binary-coded function ?(x,y).

experimental demonstration.

The hologram was placed inthe Fourier plane of the Van der Lugt system and f (x, -y) was placed in the input
plane. The output light distribution is the autocorrelation of £(x,y) fn, the x-direction ad its autoconvo-
lution in y. In Fig. 5 cross sectional scans of the output function g(x,y) along the y direction (the dif-
ferent bits) are shown for all appropriate values of x (the correlation shift variable). The same values for
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Figure 5 Cross sectional scang Qf the optically Figure 6 Numerical evaluation of the function
computed function g(x,y). E(x,¥).

E(Q,;) were calculated separately and they are tabulated in Fig. 6. Comparing Figs. 5 and 6 we find that the
optically computed values are absolutely accurate and hence from these values the autocorrelation function
R(x) = g(x) can be obtained using equation (8). R(x) is shown in Fig. 7.
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Figure 7 Autocorrelation function of f(x).

This experiment points out some interesting characteristics of binary coding. If coding is not employed
the input function must be recorded with 17:1 accuracy and the autocorrelation must be computed and detected
with a 607:1 agcuracy. With coding these requirements are only 2:1 and 5:1 respectively. 1In addition the
values of g(x,y) for the most significant bits (e.g. for y = 6-8) are 0, 1 or 2 whereas the larger
values of §(§,§) appear at less significant bits. This will in general be desirable since it will be less
likely that an error will occur at the higher bits which would result in a larger overall error._ In general,
if the space~bandwidth product of f(x) is N and we use L bits to represent it, the function g(x,y) will have
a maximum value N at the most significant bit and an overall maximum value N x L.

max[g(x,y)] = NL. (15)
. The maximum value of g(Q) is given by
~ L 2
max[g(x)] = N(27-1)". (L6)

Thus the use of binary coding results in a decrease in the dynamic range requirement at the output of the
system by a factor L/(2k-1)2.
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